
hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Windows Kernel Programming, Second Edition

Pavel Yosifovich

This book is for sale at http://leanpub.com/windowskernelprogrammingsecondedition

This version was published on 2023-04-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations
to get reader feedback, pivot until you have the right book and build traction once you do.

© 2020 - 2023 Pavel Yosifovich

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

http://leanpub.com/windowskernelprogrammingsecondedition
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction . 1
Who Should Read This Book . 1
What You Should Know to Use This Book . 1
Book Contents . 1
Sample Code . 2

Chapter 1: Windows Internals Overview . 4
Processes . 4
Virtual Memory . 6

Page States . 8
System Memory . 8

Threads . 9
Thread Stacks . 10

System Services (a.k.a. System Calls) . 12
General System Architecture . 13
Handles and Objects . 16

Object Names . 17
Accessing Existing Objects . 19

Chapter 2: Getting Started with Kernel Development . 23
Installing the Tools . 23
Creating a Driver Project . 24
The DriverEntry and Unload Routines . 25
Deploying the Driver . 27
Simple Tracing . 31
Summary . 33

Chapter 3: Kernel Programming Basics . 34
General Kernel Programming Guidelines . 34

Unhandled Exceptions . 35
Termination . 35
Function Return Values . 36
IRQL . 36
C++ Usage . 36
Testing and Debugging . 37

Debug vs. Release Builds . 38

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

The Kernel API . 38
Functions and Error Codes . 39
Strings . 40
Dynamic Memory Allocation . 42
Linked Lists . 44
The Driver Object . 46
Object Attributes . 47
Device Objects . 51
Opening Devices Directly . 53
Summary . 56

Chapter 4: Driver from Start to Finish . 57
Introduction . 57
Driver Initialization . 58

Passing Information to the Driver . 60
Client / Driver Communication Protocol . 61
Creating the Device Object . 61

Client Code . 64
The Create and Close Dispatch Routines . 66
The Write Dispatch Routine . 67
Installing and Testing . 71
Summary . 75

Chapter 5: Debugging and Tracing . 76
Debugging Tools for Windows . 76
Introduction toWinDbg . 77

Tutorial: User mode debugging basics . 78
Kernel Debugging . 95

Local Kernel Debugging . 95
Local kernel Debugging Tutorial . 96

Full Kernel Debugging . 104
Using a Virtual Serial Port . 105
Using the Network . 109

Kernel Driver Debugging Tutorial . 110
Asserts and Tracing . 115

Asserts . 115
Extended DbgPrint . 117
Other Debugging Functions . 122
Trace Logging . 123
Viewing ETW Traces . 126

Summary . 131

Chapter 6: Kernel Mechanisms . 132
Interrupt Request Level (IRQL) . 132

Raising and Lowering IRQL . 135
Thread Priorities vs. IRQLs . 136

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

Deferred Procedure Calls . 136
Using DPC with a Timer . 139

Asynchronous Procedure Calls . 140
Critical Regions and Guarded Regions . 141

Structured Exception Handling . 141
Using __try/__except . 143
Using __try/__finally . 145
Using C++ RAII Instead of __try / __finally . 147

System Crash . 149
Crash Dump Information . 151
Analyzing a Dump File . 155
System Hang . 158

Thread Synchronization . 160
Interlocked Operations . 160
Dispatcher Objects . 162
Mutex . 164
Fast Mutex . 170
Semaphore . 170
Event . 171
Named Events . 172
Executive Resource . 174

High IRQL Synchronization . 176
The Spin Lock . 177
Queued Spin Locks . 181

Work Items . 182
Summary . 184

Chapter 7: The I/O Request Packet . 185
Introduction to IRPs . 185
Device Nodes . 186

IRP Flow . 190
IRP and I/O Stack Location . 191

Viewing IRP Information . 194
Dispatch Routines . 198

Completing a Request . 199
Accessing User Buffers . 200

Buffered I/O . 201
Direct I/O . 204
User Buffers for IRP_MJ_DEVICE_CONTROL . 210

Putting it All Together: The Zero Driver . 212
Using a Precompiled Header . 212
The DriverEntry Routine . 214
The Create and Close Dispatch Routines . 216
The Read Dispatch Routine . 216
The Write Dispatch Routine . 217
Test Application . 218

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

Read/Write Statistics . 219
Summary . 223

Chapter 8: Advanced Programming Techniques (Part 1) . 224
Driver Created Threads . 224
Memory Management . 226

Pool Allocations . 226
Secure Pools . 229
Overloading the new and delete Operators . 231
Lookaside Lists . 233
The “Classic” Lookaside API . 233
The Newer Lookaside API . 235

Calling Other Drivers . 238
Putting it All Together: The Melody Driver . 240

Client Code . 256
Invoking System Services . 257

Example: Enumerating Processes . 259
Summary . 262

Chapter 9: Process and Thread Notifications . 263
Process Notifications . 263
Implementing Process Notifications . 266

The DriverEntry Routine . 270
Handling Process Exit Notifications . 272
Handling Process Create Notifications . 275

Providing Data to User Mode . 278
The User Mode Client . 281

Thread Notifications . 284
Image Load Notifications . 287

Final Client Code . 294
Remote Thread Detection . 297

The Detector Client . 306
Summary . 307

Chapter 10: Object and Registry Notifications . 308
Object Notifications . 308

Pre-Operation Callback . 310
Post-Operation Callback . 313

The Process Protector Driver . 314
Object Notification Registration . 314
Managing Protected Processes . 316
The Pre-Callback . 320
The Client Application . 320

Registry Notifications . 324
Registry Overview . 324
Using Registry Notifications . 328

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

Handling Pre-Notifications . 330
Handling Post-Operations . 330

Extending the SysMon Driver . 331
Handling Registry Callback . 332
Modified Client Code . 338
Performance Considerations . 340
Miscellaenous Notes . 340

Summary . 341

Chapter 11: Advanced Programming Techniques (Part 2) . 342
Timers . 342

Kernel Timers . 342
Timer Resolution . 344
High-Resolution Timers . 346
I/O Timer . 350

Generic Tables . 351
Splay Trees . 351
Tables Sample Driver . 355
Testing the Tables Driver . 365
AVL Trees . 368
Hash Tables . 369

Singly Linked Lists . 369
Sequenced Singly-Linked Lists . 370

Callback Objects . 371

Chapter 12: File System Mini-Filters . 376
Introduction . 377
Loading and Unloading . 378
Initialization . 380

Operations Callback Registration . 383
The Altitude . 387

Installation . 389
Installing the Driver . 392

Processing I/O Operations . 392
Pre Operation Callbacks . 393
Post Operation Callbacks . 395

File Names . 396
File Name Parts . 398
RAII FLT_FILE_NAME_INFORMATION wrapper . 401

The Delete Protector Driver . 402
Handling Pre-Create . 407
Handling Pre-Set Information . 409
DelProtect Configuration . 412
Testing the Modified Driver . 413

The Directory Hiding Driver . 414
Managing Directories . 415

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

Phase 1: Prevent Access . 419
Phase 2: Making a Directory Invisible . 421

Contexts . 432
Managing Contexts . 434

Initiating I/O Requests . 436
The File Backup Driver . 437

The Post Create Callback . 439
The Pre-Write Callback . 443
The Post-Cleanup Callback . 450
Testing the Driver . 451
Restoring Backups . 452
File Copying with a Section Object . 453

User Mode Communication . 457
Creating the Communication Port . 457
User Mode Connection . 459
Sending and Receiving Messages . 460
Enhanced Backup Driver . 461
The User Mode Client . 464

Debugging . 466
Exercises . 470
Summary . 470

Chapter 13: The Windows Filtering Platform . 471
WFP Overview . 471
The WFP API . 481
User-Mode Examples . 483

Enumerating Objects . 483
Adding Filters . 485

Callout Drivers . 492
Callout Driver Basics . 493
Callout Registration . 493

Demo: Callout Driver . 501
The Driver . 501
Managing Processes . 505
Callout Callbacks . 508

Demo: User-Mode Client . 512
Testing . 521
Debugging . 522

Summary . 522

Chapter 14: Introduction to KMDF . 523
Introduction to WDF . 523
Introduction to KMDF . 525

KMDF Objects . 525
Core Object Types . 526

Object Creation . 527

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

CONTENTS

Context Memory . 530
The Booster KMDF Driver . 530

Driver Initialization . 531
Device I/O Control Handling . 536

The INF File . 539
The Install Sections . 541
Device Installation . 542

The User-Mode Client . 543
Installing and Testing . 546
Registering a Device Class . 552
Summary . 554

Chapter 15: Miscellaneous Topics . 555
Driver Signing . 555
Driver Verifier . 559

Example Driver Verifier Sessions . 563
Filter Drivers . 568

Filter Driver Implementation . 570
Attaching Filters . 571
Attaching Filters at Arbitrary Time . 573
Filter Cleanup . 575
More on Hardware-Based Filter Drivers . 576

Device Monitor . 577
Adding a Device to Filter . 578
Removing a Filter Device . 584
Initialization and Unload . 586
Handling Requests . 587
Testing the Driver . 591
Results of Requests . 595

Driver Hooking . 597
Kernel Libraries . 599
Summary . 600

Appendix: The Kernel Template Library . 601
Standard Library . 601
Synchronization . 601
Memory . 601
Strings . 602
Containers . 603
File System Mini-Filters . 603

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Introduction
Windows kernel programming is considered by many a dark art, available to select few that manage to
somehow unlock the mysteries of the Windows kernel. Kernel development, however, is no different than
user-mode development, at least in general terms. In both cases, a good understanding of the platform is
essential for producing high quality code.

The book is a guide to programming within the Windows kernel, using the well-known Visual Studio inte-
grated development environment (IDE). This environment is familiar to many developers in the Microsoft
space, so that the learning curve is restricted to kernel understanding, coding and debugging, with less
friction from the development tools.

The book targets software device drivers, a term I use to refer to drivers that do not deal with hardware.
Software kernel drivers have full access to the kernel, allowing these to perform any operation allowed by
the kernel. Some software drivers are more specific, such as file system mini filters, also described in the
book.

Who Should Read This Book

The book is intended for software developers that target the Windows kernel, and need to write kernel
drivers to achieve their goals. Common scenarios where kernel drivers are employed are in the Cyber
Security space, where kernel drivers are the chief mechanism to get notified of important events, with the
power to intercept certain operations. The book uses C and C++ for code examples, as the kernel API is all
C. C++ is used where it makes sense, where its advantages are obvious in terms of maintenance, clarity,
resource management, or any combination of these. The book does not use complex C++ constructs, such
as template metaprogramming. The book is not about C++, it’s about Windows kernel drivers.

What You Should Know to Use This Book

Readers should be very comfortable with the C programming language, especially with pointers, struc-
tures, and its standard library, as these occur very frequently when working with kernel APIs. Basic C++
knowledge is highly recommended, although it is possible to traverse the book with C proficiency only.

Book Contents

Here is a quick rundown of the chapters in the book:

• Chapter 1:Windows Internals Overview - provides the fundamentals of the internal workings of
the Windows OS at a high level, enough to get the fundamentals without being bogged down by
too many details.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Introduction 2

• Chapter 2:Getting Started with Kernel Development - describes the tools and procedures needed
to set up a development environment for developing kernel drivers. A very simple driver is created
to make sure all the tools and procedures are working correctly.

• Chapter 3: Kernel Programming Basics - looks at the fundamentals of writing drivers, including
basic kernel APIs, handling of common programming tasks involving strings, linked lists, dynamic
memory allocations, and more.

• Chapter 4: Driver from Start to Finish - shows how to build a complete driver that performs some
useful functionality, along with a client application to drive it.

• Chapter 5:Debugging and Tracing - shows how to useWinDbg to debug user-mode and especially
kernel-mode code. It also looks at tracing driver code.

• Chapter 6: Kernel Mechanisms - looks at various kernel mechanisms that a driver developer must
be familiar with, such IRQLs, BSODs, and synchronization.

• Chapter 7: The I/O Request Packet - discussed the details of handling IRPs, accessing user-mode
buffers in a safe way, and other aspects of handling I/O requests, which is the main work of a typical
driver.

• Chapter 8: Advanced Programming Techniques (Part 1) - discussed various kernel programming
techniques, including thread management, memory management and using system calls.

• Chapter 9: Process and Thread Notifications - shows how drivers can be notified when processes
and threads are created or destroyed.

• Chapter 10: Object and Registry Notifications - shows how drivers can be notified when handles
are opened to certain types of objects. The chapter also shows how to be notified when Registry
operations are invoked.

• Chapter 11: Advanced Programming Techniques (Part 2) - shows more techniques useful for
driver writers, such as using timers and trees.

• Chapter 12: File System Mini-Filters - discussed the support provided by Windows and the Filter
Manager to handle file system notifications.

• Chapter 13: The Windows Filtering Platform - shows how to the WFP to intercept network
operations.

• Chapter 14: Introduction to KMDF - introduces the basics of the Kernel Mode Driver Framework.
• Chapter 15:Miscellaneous Topics - discusses other topics of interest, such as generic filter drivers,
and hooking drivers.

• Appendix: The Kernel Template Library - summaries the usage of a set of classes supporting many
generic aspects of kernel development that has been developed specifically for this book.

If you are new toWindows kernel development, you should read chapters 1 to 7 in order. Chapter 8 contains
some advanced material you may want to go back to after you have built a few simple drivers. Chapters
9 onward describe specialized techniques, and in theory at least, can be read in any order.

Sample Code

All the sample code from the book is freely available on the book’s Github repository at https://github.
com/zodiacon/windowskernelprogrammingbook2e. Updates to the code samples will be pushed to this
repository. It’s recommended the reader clone the repository to the local machine, so it’s easy to experiment
with the code directly.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/zodiacon/windowskernelprogrammingbook2e
https://github.com/zodiacon/windowskernelprogrammingbook2e

Introduction 3

All code samples have been compiled with Visual Studio 2019. It’s possible to compile most code samples
with earlier versions of Visual Studio if desired. There might be few features of the latest C++ standards
that may not be supported in earlier versions, but these should be easy to fix.

Happy reading!

Pavel Yosifovich
March 2023

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview
This chapter describes the most important concepts in the internal workings of Windows. Some of the
topics will be described in greater detail later in the book, where it’s closely related to the topic at hand.
Make sure you understand the concepts in this chapter, as these make the foundations upon any driver
and even user mode low-level code, is built.

In this chapter:

• Processes
• Virtual Memory
• Threads
• System Services
• System Architecture
• Handles and Objects

Processes

A process is a containment and management object that represents a running instance of a program. The
term “process runs” which is used fairly often, is inaccurate. Processes don’t run – processes manage.
Threads are the ones that execute code and technically run. From a high-level perspective, a process owns
the following:

• An executable program, which contains the initial code and data used to execute code within the
process. This is true for most processes, but some special ones don’t have an executable image
(created directly by the kernel).

• A private virtual address space, used for allocating memory for whatever purposes the code within
the process needs it.

• An access token (called primary token), which is an object that stores the security context of the
process, used by threads executing in the process (unless a thread assumes a different token by using
impersonation).

• A private handle table to executive objects, such as events, semaphores, and files.
• One ormore threads of execution. A normal user-mode process is created with one thread (executing
the classic main/WinMain function). A user mode process without threads is mostly useless, and
under normal circumstances will be destroyed by the kernel.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 5

These elements of a process are depicted in figure 1-1.

Figure 1-1: Important ingredients of a process

A process is uniquely identified by its Process ID, which remains unique as long as the kernel process object
exists. Once it’s destroyed, the same ID may be reused for new processes. It’s important to realize that the
executable file itself is not a unique identifier of a process. For example, there may be five instances of
notepad.exe running at the same time. Each of these Notepad instances has its own address space, threads,
handle table, process ID, etc. All those five processes are using the same image file (notepad.exe) as their
initial code and data. Figure 1-2 shows a screenshot of Task Manager’s Details tab showing five instances
of Notepad.exe, each with its own attributes.hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 6

Figure 1-2: Five instances of notepad

Virtual Memory

Every process has its own virtual, private, linear address space. This address space starts out empty (or
close to empty, since the executable image and NtDll.Dll are the first to be mapped, followed by more
subsystem DLLs). Once execution of the main (first) thread begins, memory is likely to be allocated, more
DLLs loaded, etc. This address space is private, which means other processes cannot access it directly.
The address space range starts at zero (technically the first and last 64KB of the address space cannot be
committed), and goes all the way to a maximum which depends on the process “bitness” (32 or 64 bit) and
the operating system “bitness” as follows:

• For 32-bit processes on 32-bit Windows systems, the process address space size is 2 GB by default.
• For 32-bit processes on 32-bit Windows systems that use the increase user virtual address space
setting, it can be configured to have up to 3GB of address space per process. To get the extended
address space, the executable from which the process was created must have been marked with the
LARGEADDRESSAWARE linker flag in its PE header. If it was not, it would still be limited to 2 GB.

• For 64-bit processes (on a 64-bitWindows system, naturally), the address space size is 8 TB (Windows
8 and earlier) or 128 TB (Windows 8.1 and later).

• For 32-bit processes on a 64-bit Windows system, the address space size is 4 GB if the executable
image has the LARGEADDRESSAWARE flag in its PE header. Otherwise, the size remains at 2 GB.

The requirement of the LARGEADDRESSAWARE flag stems from the fact that a 2 GB address range
requires 31 bits only, leaving the most significant bit (MSB) free for application use. Specifying
this flag indicates that the program is not using bit 31 for anything and so having that bit set
(which would happen for addresses larger than 2 GB) is not an issue.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 7

Each process has its own address space, which makes any process address relative, rather than absolute.
For example, when trying to determine what lies in address 0x20000, the address itself is not enough; the
process to which this address relates to must be specified.

The memory itself is called virtual, which means there is an indirect relationship between an address
and the exact location where it’s found in physical memory (RAM). A buffer within a process may be
mapped to physical memory, or it may temporarily reside in a file (such as a page file). The term virtual
refers to the fact that from an execution perspective, there is no need to know if the memory about to be
accessed is in RAM or not; if the memory is indeed mapped to RAM, the CPU will perform the virtual-
to-physical translation before accessing the data. if the memory is not resident (specified by a flag in the
translation table entry), the CPU will raise a page fault exception that causes the memory manager’s page
fault handler to fetch the data from the appropriate file (if indeed it’s a valid page fault), copy it to RAM,
make the required changes in the page table entries that map the buffer, and instruct the CPU to try again.
Figure 1-3 shows this conceptual mapping from virtual to physical memory for two processes.

Figure 1-3: virtual memory mapping

The unit of memory management is called a page. Every attribute related to memory is always at a
page’s granularity, such as its protection or state. The size of a page is determined by CPU type (and on
some processors, may be configurable), and in any case, the memory manager must follow suit. Normal
(sometimes called small) page size is 4 KB on all Windows-supported architectures.

Apart from the normal (small) page size, Windows also supports large pages. The size of a large page is 2
MB (x86/x64/ARM64) or 4 MB (ARM). This is based on using the Page Directory Entry (PDE) to map the
large page without using a page table. This results in quicker translation, but most importantly better use
of the Translation Lookaside Buffer (TLB) – a cache of recently translated pages maintained by the CPU.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 8

In the case of a large page, a single TLB entry maps significantly more memory than a small page.

The downside of large pages is the need to have the memory contiguous in RAM, which can
fail if memory is tight or very fragmented. Also, large pages are always non-pageable and can
only use read/write protection.
Huge pages (1 GB in size) are supported on Windows 10 and Server 2016 and later. These are
used automatically with large pages if an allocation is at least 1 GB in size, and that size can be
located as contiguous in RAM.

Page States

Each page in virtual memory can be in one of three states:

• Free – the page is not allocated in any way; there is nothing there. Any attempt to access that page
would cause an access violation exception. Most pages in a newly created process are free.

• Committed – the reverse of free; an allocated page that can be accessed successfully (assuming non-
conflicting protection attributes; for example, writing to a read-only page causes an access violation).
Committed pages are mapped to RAM or to a file (such as a page file).

• Reserved – the page is not committed, but the address range is reserved for possible future com-
mitment. From the CPU’s perspective, it’s the same as Free – any access attempt raises an access
violation exception. However, new allocation attempts using the VirtualAlloc function (or NtAl-
locateVirtualMemory, the related native API) that does not specify a specific address would not
allocate in the reserved region. A classic example of using reserved memory to maintain contiguous
virtual address space while conserving committed memory usage is described later in this chapter
in the section “Thread Stacks”.

System Memory

The lower part of the address space is for user-mode processes use. While a particular thread is executing,
its associated process address space is visible from address zero to the upper limit as described in the
previous section. The operating system, however, must also reside somewhere – and that somewhere is
the upper address range that’s supported on the system, as follows:

• On 32-bit systems running without the increase user virtual address space setting, the operating
system resides in the upper 2 GB of virtual address space, from address 0x80000000 to 0xFFFFFFFF.

• On 32-bit systems configured with the increase user virtual address space setting, the operating
system resides in the address space left. For example, if the system is configured with 3 GB user
address space per process (the maximum), the OS takes the upper 1 GB (from address 0xC0000000
to 0xFFFFFFFF). The component that suffers mostly from this address space reduction is the file
system cache.

• On 64-bit systems runningWindows 8, Server 2012 and earlier, the OS takes the upper 8 TB of virtual
address space.

• On 64-bit systems running Windows 8.1, Server 2012 R2 and later, the OS takes the upper 128 TB of
virtual address space.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 9

Figure 1-4 shows the virtual memory layout for the two “extreme” cases: 32-bit process on a 32-bit system
(left) and a 64-bit process on a 64-bit system (right).

Figure 1-4: virtual memory layout

System space is not process-relative – after all, it’s the same system, the same kernel, the same drivers that
service every process on the system (the exception is some system memory that is on a per-session basis
but is not important for this discussion). It follows that any address in system space is absolute rather than
relative, since it “looks” the same from every process context. Of course, actual access from user mode into
system space results in an access violation exception.

System space is where the kernel itself, the Hardware Abstraction Layer (HAL), and kernel drivers reside
once loaded. Thus, kernel drivers are automatically protected from direct user mode access. It also means
they have a potentially system-wide impact. For example, if a kernel driver leaks memory, that memory
will not be freed even after the driver unloads. User-mode processes, on the other hand, can never leak
anything beyond their lifetime. The kernel is responsible for closing and freeing everything private to a
dead process (all handles are closed and all private memory is freed).

Threads

The actual entities that execute code are threads. A Thread is contained within a process, using the
resources exposed by the process to do work (such as virtual memory and handles to kernel objects).
The most important details a thread owns are the following:

• Current access mode, either user or kernel.
• Execution context, including processor registers and execution state.
• One or two stacks, used for local variable allocations and call management.
• Thread Local Storage (TLS) array, which provides a way to store thread-private data with uniform
access semantics.

• Base priority and a current (dynamic) priority.
• Processor affinity, indicating on which processors the thread is allowed to run on.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 10

The most common states a thread can be in are:

• Running – currently executing code on a (logical) processor.
• Ready – waiting to be scheduled for execution because all relevant processors are busy or unavail-
able.

• Waiting – waiting for some event to occur before proceeding. Once the event occurs, the thread
goes to the Ready state.

Figure 1-5 shows the state diagram for these states. The numbers in parenthesis indicate the state numbers,
as can be viewed by tools such as Performance Monitor. Note that the Ready state has a sibling state called
Deferred Ready, which is similar, and exists to minimize internal locking.

Figure 1-5: Common thread states

Thread Stacks

Each thread has a stack it uses while executing, used to store local variables, parameters passed to functions
(in some cases), and where return addresses are stored prior to making function calls. A thread has at least
one stack residing in system (kernel) space, and it’s pretty small (default is 12 KB on 32-bit systems and
24 KB on 64-bit systems). A user-mode thread has a second stack in its process user-space address range
and is considerably larger (by default can grow up to 1 MB). An example with three user-mode threads
and their stacks is shown in figure 1-6. In the figure, threads 1 and 2 are in process A, and thread 3 is in
process B.

The kernel stack always resides in RAM while the thread is in the Running or Ready states. The reason
for this is subtle and will be discussed later in this chapter. The user-mode stack, on the other hand, may
be paged out, just like any other user-mode memory.

The user-mode stack is handled differently than the kernel-mode stack in terms of its size. It starts out
with a certain amount of committed memory (could be as small as a single page), where the next page is
committed with a PAGE_GUARD attribute. The rest of the stack address space memory is reserved, thus not

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 11

wasting memory. The idea is to grow the stack in case the thread’s code needs to use more stack space.
If the thread needs more stack space it would access the guard page which would throw a page-guard
exception. The memory manager then removes the guard protection, and commits an additional page,
marking it with a PAGE_GUARD attribute. This way, the stack grows as needed, avoiding the entire stack
memory being committed upfront. Figure 1-7 shows this layout.

Figure 1-6: User mode threads and their stacks

Technically, Windows uses 3 guard pages rather than one in most cases.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 12

Figure 1-7: Thread’s stack in user space

The sizes of a thread’s user-mode stack are determined as follows:

• The executable image has a stack commit and reserved values in its Portable Executable (PE) header.
These are taken as defaults if a thread does not specify alternative values. These are always used for
the first thread in the process.

• When a thread is created with CreateThread (or similar functions), the caller can specify its re-
quired stack size, either the upfront committed size or the reserved size (but not both), depending
on a flag provided to the function; specifying zero uses the defaults set in the PE header.

Curiously enough, the functions CreateThread and CreateRemoteThread(Ex) only allow
specifying a single value for the stack size and can be the committed or the reserved size, but not
both. The native (undocumented) function, NtCreateThreadEx allows specifying both values.

System Services (a.k.a. System Calls)

Applications need to perform various operations that are not purely computational, such as allocating
memory, opening files, creating threads, etc. These operations can only be ultimately performed by code
running in kernel mode. So how would user-mode code be able to perform such operations?

Let’s take a common (simple) example: a user running a Notepad process uses the File / Open menu to
request opening a file. Notepad’s code responds by calling the CreateFile documented Windows API
function. CreateFile is documented as implemented in kernel32.Dll, one of the Windows subsystem
DLLs. This function still runs in user mode, so there is no way it can directly open a file. After some
error checking, it calls NtCreateFile, a function implemented in NTDLL.dll, a foundational DLL that
implements the API known as the Native API, and is the lowest layer of code which is still in user mode.
This function (documented in theWindows Driver Kit for device driver developers) is the one that makes
the transition to kernel mode. Before the actual transition, it puts a number, called system service number,
into a CPU register (EAX on Intel/AMD architectures). Then it issues a special CPU instruction (syscall
on x64 or sysenter on x86) that makes the actual transition to kernel mode while jumping to a predefined
routine called the system service dispatcher.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 13

The system service dispatcher, in turn, uses the value in that EAX register as an index into a System Service
Dispatch Table (SSDT). Using this table, the code jumps to the system service (system call) itself. For
our Notepad example, the SSDT entry would point to the NtCreateFile function, implemented by the
kernel’s I/O manager. Notice the function has the same name as the one in NTDLL.dll, and has the same
parameters as well. On the kernel side is the real implementation. Once the system service is complete,
the thread returns to user mode to execute the instruction following sysenter/syscall. This sequence of
calls is depicted in figure 1-8.

Figure 1-8: System service function call flow

General System Architecture

Figure 1-9 shows the general architecture of Windows, comprising of user-mode and kernel-mode compo-
nents.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 14

Figure 1-9: Windows system architecture

Here’s a quick rundown of the named boxes appearing in figure 1-9:

• User processes

These are normal processes based on image files, executing on the system, such as instances of
Notepad.exe, cmd.exe, explorer.exe, and so on.

• Subsystem DLLs

Subsystem DLLs are dynamic link libraries (DLLs) that implement the API of a subsystem. A sub-
system is a particular view of the capabilities exposed by the kernel. Technically, starting from
Windows 8.1, there is only a single subsystem – the Windows Subsystem. The subsystem DLLs
include well-known files, such as kernel32.dll, user32.dll, gdi32.dll, advapi32.dll, combase.dll, and
many others. These include mostly the officially documented API of Windows.

• NTDLL.DLL

A system-wide DLL, implementing the Windows native API. This is the lowest layer of code which
is still in user mode. Its most important role is to make the transition to kernel mode for system call
invocation. NTDLL also implements the Heap Manager, the Image Loader and some part of the user
mode thread pool.

• Service Processes

Service processes are normal Windows processes that communicate with the Service Control Man-
ager (SCM, implemented in services.exe) and allow some control over their lifetime. The SCM can
start, stop, pause, resume and send other messages to services. Services typically execute under one
of the special Windows accounts – local system, network service or local service.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 15

• Executive

The Executive is the upper layer of NtOskrnl.exe (the “kernel”). It hosts most of the code that is
in kernel mode. It includes mostly the various “managers”: Object Manager, Memory Manager, I/O
Manager, Plug & Play Manager, Power Manager, Configuration Manager, etc. It’s by far larger than
the lower Kernel layer.

• Kernel

The Kernel layer implements the most fundamental and time-sensitive parts of kernel-mode OS
code. This includes thread scheduling, interrupt and exception dispatching, and implementation of
various kernel primitives such as mutexes and semaphores. Some of the kernel code is written in
CPU-specific machine language for efficiency and for getting direct access to CPU-specific details.

• Device Drivers

Device drivers are loadable kernel modules. Their code executes in kernel mode and so has the full
power of the kernel. This book is dedicated to writing certain types of kernel drivers.

• Win32k.sys

This is the kernel-mode component of the Windows subsystem. Essentially, it’s a kernel module
(driver) that handles the user interface part of Windows and the classic Graphics Device Interface
(GDI) APIs. This means that all windowing operations (CreateWindowEx, GetMessage, PostMes-
sage, etc.) are handled by this component. The rest of the system has little-to-none knowledge of
UI.

• Hardware Abstraction Layer (HAL)

The HAL is a software abstraction layer over the hardware closest to the CPU. It allows device
drivers to use APIs that do not require detailed and specific knowledge of things like Interrupt
Controllers or DMA controller. Naturally, this layer is mostly useful for device drivers written to
handle hardware devices.

• System Processes

System processes is an umbrella term used to describe processes that are typically “just there”, doing
their thing where normally these processes are not communicated with directly. They are important
nonetheless, and some in fact, critical to the system’s well-being. Terminating some of them is fatal
and causes a system crash. Some of the system processes are native processes, meaning they use
the native API only (the API implemented by NTDLL). Example system processes include Smss.exe,
Lsass.exe,Winlogon.exe, and Services.exe.

• Subsystem Process

The Windows subsystem process, running the image Csrss.exe, can be viewed as a helper to the ker-
nel for managing processes running under the Windows subsystem. It is a critical process, meaning
if killed, the systemwould crash. There is oneCsrss.exe instance per session, so on a standard system
two instances would exist – one for session 0 and one for the logged-on user session (typically 1).
Although Csrss.exe is the “manager” of the Windows subsystem (the only one left these days), its
importance goes beyond just this role.

• Hyper-V Hypervisor

The Hyper-V hypervisor exists on Windows 10 and server 2016 (and later) systems if they support
Virtualization Based Security (VBS). VBS provides an extra layer of security, where the normal OS is
a virtual machine controlled byHyper-V. Two distinctVirtual Trust Levels (VTLs) are defined, where
VTL 0 consists of the normal user-mode/kernel-mode we know of, and VTL 1 contains the secure

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 16

kernel and Isolated User Mode (IUM). VBS is beyond the scope of this book. For more information,
check out theWindows Internals book and/or the Microsoft documentation.

Windows 10 version 1607 introduced the Windows Subsystem for Linux (WSL). Although this
may look like yet another subsystem, like the old POSIX and OS/2 subsystems supported by
Windows, it is not like that at all. The old subsystems were able to execute POSIX and OS/2 apps
if these were compiled using a Windows compiler to use the PE format and Windows system
calls.WSL, on the other hand, has no such requirement. Existing executables from Linux (stored
in ELF format) can be run as-is on Windows, without any recompilation.

To make something like this work, a new process type was created – the Pico process together
with a Pico provider. Briefly, a Pico process is an empty address space (minimal process) that is
used for WSL processes, where every system call (Linux system call) must be intercepted and
translated to the Windows system call(s) equivalent using that Pico provider (a device driver).
There is a true Linux (the user-mode part) installed on the Windows machine.

The above description is for WSL version 1. Starting with Windows 10 version 2004, Windows
supports a new version ofWSL known asWSL 2.WSL 2 is not based on pico processes anymore.
Instead, it’s based on a hybrid virtual machine technology that allows installing a full Linux
system (including the Linux kernel), but still see and share the Windows machine’s resources,
such as the file system. WSL 2 is faster thanWSL 1 and solves some edge cases that didn’t work
well in WSL 1, thanks to the real Linux kernel handling Linux system calls.

Handles and Objects

The Windows kernel exposes various types of objects for use by user-mode processes, the kernel itself and
kernel-mode drivers. Instances of these types are data structures in system space, created by the Object
Manager (part of the executive) when requested to do so by user-mode or kernel-mode code. Objects are
reference counted – only when the last reference to the object is released will the object be destroyed and
freed from memory.

Since these object instances reside in system space, they cannot be accessed directly by user mode. User
mode must use an indirect access mechanism, known as handles. A handle is an index to an entry in a
table maintained on a process by process basis, stored in kernel space, that points to a kernel object residing
in system space. There are various Create* and Open* functions to create/open objects and retrieve back
handles to these objects. For example, the CreateMutex user-mode function allows creating or opening a
mutex (depending on whether the object is named and exists). If successful, the function returns a handle
to the object. A return value of zero means an invalid handle (and a function call failure). The OpenMutex
function, on the other hand, tries to open a handle to a named mutex. If the mutex with that name does
not exist, the function fails and returns null (0).

Kernel (and driver) code can use either a handle or a direct pointer to an object. The choice is usually
based on the API the code wants to call. In some cases, a handle given by user mode to the driver must
be turned into a pointer with the ObReferenceObjectByHandle function. We’ll discuss these details in a
later chapter.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 17

Most functions return null (zero) on failure, but some do not. Most notably, the CreateFile
function returns INVALID_HANDLE_VALUE (-1) if it fails.

Handle values are multiples of 4, where the first valid handle is 4; Zero is never a valid handle value.

Kernel-mode code can use handles when creating/opening objects, but they can also use direct pointers to
kernel objects. This is typically done when a certain API demands it. Kernel code can get a pointer to an
object given a valid handle using the ObReferenceObjectByHandle function. If successful, the reference
count on the object is incremented, so there is no danger that if the user-mode client holding the handle
decided to close it while kernel code holds a pointer to the object would now hold a dangling pointer. The
object is safe to access regardless of the handle-holder until the kernel code calls ObDerefenceObject,
which decrements the reference count; if the kernel code missed this call, that’s a resource leak which will
only be resolved in the next system boot.

All objects are reference counted. The object manager maintains a handle count and total reference count
for objects. Once an object is no longer needed, its client should close the handle (if a handle was used to
access the object) or dereference the object (if kernel client using a pointer). From that point on, the code
should consider its handle/pointer to be invalid. The Object Manager will destroy the object if its reference
count reaches zero.

Each object points to an object type, which holds information on the type itself, meaning there is a single
type object for each type of object. These are also exposed as exported global kernel variables, some of
which are defined in the kernel headers and are needed in certain cases, as we’ll see in later chapters.

Object Names

Some types of objects can have names. These names can be used to open objects by name with a suitable
Open function. Note that not all objects have names; for example, processes and threads don’t have names –
they have IDs. That’s why the OpenProcess and OpenThread functions require a process/thread identifier
(a number) rather than a string-base name. Another somewhat weird case of an object that does not have
a name is a file. The file name is not the object’s name – these are different concepts.

Threads appear to have a name (starting from Windows 10), that can be set with the user-
mode API SetThreadDescription. This is not, however, a true name, but rather a friendly
name/description most useful in debugging, as Visual Studio shows a thread’s description, if
there is any.

From user-mode code, calling a Create function with a name creates the object with that name if an object
with that name does not exist, but if it exists it just opens the existing object. In the latter case, calling
GetLastError returns ERROR_ALREADY_EXISTS, indicating this is not a new object, and the returned
handle is yet another handle to an existing object.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 18

The name provided to a Create function is not actually the final name of the object. It’s prepended with
\Sessions\x\BaseNamedObjects\ where x is the session ID of the caller. If the session is zero, the name is
prepended with \BaseNamedObjects\. If the caller happens to be running in an AppContainer (typically
a Universal Windows Platform process), then the prepended string is more complex and consists of the
unique AppContainer SID: \Sessions\x\AppContainerNamedObjects\{AppContainerSID}.

All the above means is that object names are session-relative (and in the case of AppContainer – package
relative). If an object must be shared across sessions it can be created in session 0 by prepending the object
namewithGlobal\; for example, creating amutex with the CreateMutex function namedGlobal\MyMutex
will create it under \BaseNamedObjects. Note that AppContainers do not have the power to use session 0
object namespace.
This hierarchy can be viewed with the SysinternalsWinObj tool (run elevated) as shown in figure 1-10.

Figure 1-10: SysinternalsWinObj tool

The view shown in figure 1-10 is the object manager namespace, comprising of a hierarchy of named
objects. This entire structure is held in memory and manipulated by the Object Manager (part of the
Executive) as required. Note that unnamed objects are not part of this structure, meaning the objects seen
inWinObj do not comprise all the existing objects, but rather all the objects that were created with a name.

Every process has a private handle table to kernel objects (whether named or not), which can be viewed
with the Process Explorer and/or Handles Sysinternals tools. A screenshot of Process Explorer showing
handles in some process is shown in figure 1-11. The default columns shown in the handles view are the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 19

object type and name only. However, there are other columns available, as shown in figure 1-11.

Figure 1-11: Viewing handles in processes with Process Explorer

By default, Process Explorer shows only handles for objects, which have names (according to Process
Explorer’s definition of a name, discussed shortly). To view all handles in a process, select Show Unnamed
Handles and Mappings from Process Explorer’s View menu.

The various columns in the handle view provide more information for each handle. The handle value and
the object type are self explanatory. The name column is tricky. It shows true object names for Mutexes
(Mutants), Semaphores, Events, Sections, ALPC Ports, Jobs, Timers, Directory (object manager Directories,
not file system directories), and other, less used object types. Yet others are shown with a name that has a
different meaning than a true named object:

• Process and Thread objects, the name is shown as their unique ID.
• For File objects, it shows the file name (or device name) pointed to by the file object. It’s not the
same as an object’s name, as there is no way to get a handle to a file object given the file name -
only a new file object may be created that accesses the same underlying file or device (assuming
sharing settings for the original file object allow it).

• (Registry) Key objects names are shown with the path to the registry key. This is not a name, for
the same reasoning as for file objects.

• Token object names are shown with the user name stored in the token.

Accessing Existing Objects

The Access column in Process Explorer’s handles view shows the access mask which was used to open or
create the handle. This access mask is key to what operations are allowed to be performed with a specific
handle. For example, if client code wants to terminate a process, it must call the OpenProcess function

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 20

first, to obtain a handle to the required process with an access mask of (at least) PROCESS_TERMINATE,
otherwise there is no way to terminate the process with that handle. If the call succeeds, then the call to
TerminateProcess is bound to succeed.
Here’s a user-mode example for terminating a process given its process ID:

bool KillProcess(DWORD pid) {

//

// open a powerful-enough handle to the process

//

HANDLE hProcess = OpenProcess(PROCESS_TERMINATE, FALSE, pid);

if (!hProcess)

return false;

//

// now kill it with some arbitrary exit code

//

BOOL success = TerminateProcess(hProcess, 1);

//

// close the handle

//

CloseHandle(hProcess);

return success != FALSE;

}

The Decoded Access column provides a textual description of the access mask (for some object types),
making it easier to identify the exact access allowed for a particular handle.

Double-clicking a handle entry (or right-clicking and selecting Properties) shows some of the object’s
properties. Figure 1-12 shows a screenshot of an example event object properties.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 21

Figure 1-12: Object properties in Process Explorer

Notice that the dialog shown in figure 1-12 is for the object’s properties, rather than the handle’s. In other
words, looking at an object’s properties from any handle that points to the same object shows the same
information.

The properties in figure 1-12 include the object’s name (if any), its type, a short description, its address
in kernel memory, the number of open handles, and some specific object information, such as the state
and type of the event object shown. Note that the References shown do not indicate the actual number

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 1: Windows Internals Overview 22

of outstanding references to the object (it does prior to Windows 8.1). A proper way to see the actual
reference count for the object is to use the kernel debugger’s !trueref command, as shown here:

lkd> !object 0xFFFFA08F948AC0B0

Object: ffffa08f948ac0b0 Type: (ffffa08f684df140) Event

ObjectHeader: ffffa08f948ac080 (new version)

HandleCount: 2 PointerCount: 65535

Directory Object: ffff90839b63a700 Name: ShellDesktopSwitchEvent

lkd> !trueref ffffa08f948ac0b0

ffffa08f948ac0b0: HandleCount: 2 PointerCount: 65535 RealPointerCount: 3

We’ll take a closer look at the attributes of objects and the kernel debugger in later chapters.

In the next chapter, we’ll start writing a very simple driver to show and use many of the tools we’ll need
later in this book.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel
Development
This chapter deals with the fundamentals needed to get up and running with kernel driver development.
During the course of this chapter, you’ll install the necessary tools and write a very basic driver that can
be loaded and unloaded.

In this chapter:

• Installing the Tools
• Creating a Driver Project
• The DriverEntry and Unload routines
• Deploying the Driver
• Simple Tracing

Installing the Tools

In the old days (pre-2012), the process of developing and building drivers included using a dedicated build
tool from the Device Driver Kit (DDK), without having an integrated development experience developers
were used to when developing user-mode applications. There were some workarounds, but none of them
was perfect nor officially supported by Microsoft.

Fortunately, starting with Visual Studio 2012 and Windows Driver Kit 8, Microsoft officially supports
building drivers with Visual Studio (withmsbuild), without the need to use a separate compiler and build
tools.

To get started with driver development, the following tools must be installed (in this order) on your
development machine:

• Visual Studio 2019 with the latest updates. Make sure the C++ workload is selected during installa-
tion. Note that any SKU will do, including the free Community edition.

• Windows 11 SDK (generally, the latest is recommended). Make sure at least the Debugging Tools for
Windows item is selected during installation.

• Windows 11 Driver Kit (WDK) - it supports building drivers for Windows 7 and later versions of
Windows. Make sure the wizard installs the project templates for Visual Studio at the end of the
installation.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 24

• The Sysinternals tools, which are invaluable in any “internals” work, can be downloaded for free
from http://www.sysinternals.com. Click on Sysinternals Suite on the left of that web page and
download the Sysinternals Suite zip file. Unzip to any folder, and the tools are ready to go.

The SDK and WDK versions must match. Follow the guidelines in the WDK download page to
load the corresponding SDK with the WDK.
A quick way to make sure the WDK templates are installed correctly is to open Visual Studio
and select New Project and look for driver projects, such as “Empty WDM Driver”.

Creating a Driver Project

With the above installations in place, a new driver project can be created. The template you’ll use in this
section is “WDM Empty Driver”. Figure 2-1 shows what the New Project dialog looks like for this type
of driver in Visual Studio 2019. Figure 2-2 shows the same initial wizard with Visual Studio 2019 if the
Classic Project Dialog extension is installed and enabled. The project in both figures is named “Sample”.

Figure 2-1: New WDM Driver Project in Visual Studio 2019

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

http://www.sysinternals.com.

Chapter 2: Getting Started with Kernel Development 25

Figure 2-2: New WDM Driver Project in Visual Studio 2019 with the Classic Project Dialog extension

Once the project is created, the Solution Explorer shows a single file within the Driver Files filter -
Sample.inf. You won’t need this file in this example, so simply delete it (right-click and select Remove
or press the Del key).

Now it’s time to add a source file. Right-click the Source Files node in Solution Explorer and select Add /
New Item… from the File menu. Select a C++ source file and name it Sample.cpp. Click OK to create it.

The DriverEntry and Unload Routines

Every driver has an entry point called DriverEntry by default. This can be considered the “main” function
of the driver, comparable to the classic main of a user-mode application. This function is called by a system
thread at IRQL PASSIVE_LEVEL (0). (IRQLs are discussed in detail in chapter 8.)

DriverEntry has a predefined prototype, shown here:

NTSTATUS DriverEntry(

In PDRIVER_OBJECT DriverObject, _In_ PUNICODE_STRING RegistryPath);

The _In_ annotations are part of the Source (Code) Annotation Language (SAL). These annotations are
transparent to the compiler, but provide metadata useful for human readers and static analysis tools. I may

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 26

remove these annotations in code samples to make it easier to read, but you should use SAL annotations
whenever possible.

A minimal DriverEntry routine could just return a successful status, like so:

NTSTATUS DriverEntry(

In PDRIVER_OBJECT DriverObject, _In_ PUNICODE_STRING RegistryPath) {

return STATUS_SUCCESS;

}

This code would not yet compile. First, you’ll need to include a header that has the required definitions
for the types present in DriverEntry. Here’s one possibility:

#include <ntddk.h>

Now the code has a better chance of compiling, but would still fail. One reason is that by default, the
compiler is set to treat warnings as errors, and the function does not make use of its given arguments.
Removing treat warnings as errors from the compiler’s options is not recommended, as some warnings
may be errors in disguise. These warnings can be resolved by removing the argument names entirely (or
commenting them out), which is fine for C++ files. There is another, more “classic” way to solve this, which
is to use the UNREFERENCED_PARAMETER macro:

NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(DriverObject);

UNREFERENCED_PARAMETER(RegistryPath);

return STATUS_SUCCESS;

}

As it turns out, this macro actually references the argument given just by writing its value as is, and this
shuts the compiler up, making the argument technically “referenced”.

Building the project now compiles fine, but causes a linker error. The DriverEntry function must have
C-linkage, which is not the default in C++ compilation. Here’s the final version of a successful build of the
driver consisting of a DriverEntry function only:

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(DriverObject);

UNREFERENCED_PARAMETER(RegistryPath);

return STATUS_SUCCESS;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 27

At some point, the driver may be unloaded. At that time, anything done in the DriverEntry function must
be undone. Failure to do so creates a leak, which the kernel will not clean up until the next reboot. Drivers
can have an Unload routine that is automatically called before the driver is unloaded from memory. Its
pointer must be set using the DriverUnload member of the driver object:

DriverObject->DriverUnload = SampleUnload;

The unload routine accepts the driver object (the same one passed to DriverEntry) and returns void. As
our sample driver has done nothing in terms of resource allocation in DriverEntry, there is nothing to
do in the Unload routine, so we can leave it empty for now:

void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

}

Here is the complete driver source at this point:

#include <ntddk.h>

void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

}

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = SampleUnload;

return STATUS_SUCCESS;

}

Deploying the Driver

Now that we have a successfully compiled Sample.sys driver file, let’s install it on a system and then load
it. Normally, you would install and load a driver on a virtual machine, to remove the risk of crashing your
primary machine. Feel free to do so, or take the slight risk with this minimalist driver.

Installing a software driver, just like installing a user-mode service, requires calling the CreateService
API with proper arguments, or using a comparable tool. One of the well-known tools for this purpose
is Sc.exe (short for Service Control), a built-in Windows tool for managing services. We’ll use this tool
to install and then load the driver. Note that installation and loading of drivers is a privileged operation,
normally available for administrators.

Open an elevated command window and type the following (the last part should be the path on your
system where the SYS file resides):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 28

sc create sample type= kernel binPath= c:\dev\sample\x64\debug\sample.sys

Note there is no space between type and the equal sign, and there is a space between the equal sign and
kernel; same goes for the second part.

If all goes well, the output should indicate success. To test the installation, you can open the registry editor
(regedit.exe) and look for the driver details at HKLM\System\CurrentControlSet\Services\Sample. Figure
2-3 shows a screenshot of the registry editor after the previous command.

Figure 2-3: Registry for an installed driver

To load the driver, we can use the Sc.exe tool again, this time with the start option, which uses the
StartService API to load the driver (the same API used to load services). However, on 64 bit systems
drivers must be signed, and so normally the following command would fail:

sc start sample

Since it’s inconvenient to sign a driver during development (maybe even not possible if you don’t have
a proper certificate), a better option is to put the system into test signing mode. In this mode, unsigned
drivers can be loaded without a hitch.

With an elevated command window, test signing can be turned on like so:

bcdedit /set testsigning on

Unfortunately, this command requires a reboot to take effect. Once rebooted, the previous start command
should succeed.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 29

If you are testing on a Windows 10 (or later) system with Secure Boot enabled, changing the
test signing mode will fail. This is one of the settings protected by Secure Boot (local kernel
debugging is also protected by Secure Boot). If you can’t disable Secure Boot through BIOS
setting, because of IT policy or some other reason, your best option is to test on a virtual
machine.

There is yet another setting that youmay need to specify if you intend to test the driver on pre-Windows 10
machine when using Visual Studio 2019 (or earlier) only. In this case, you have to set the target OS version
in the project properties dialog, as shown in figure 2-4. Notice that I have selected all configurations and all
platforms, so that when switching configurations (Debug/Release) or platforms (x86/x64/ARM/ARM64),
the setting is maintained.

Figure 2-4: Setting Target OS Platform in the project properties

Once test signing mode is on, and the driver is loaded, this is the output you should see:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 30

c:/>sc start sample

SERVICE_NAME: sample

TYPE : 1 KERNEL_DRIVER

STATE : 4 RUNNING

(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)

WIN32_EXIT_CODE : 0 (0x0)

SERVICE_EXIT_CODE : 0 (0x0)

CHECKPOINT : 0x0

WAIT_HINT : 0x0

PID : 0

FLAGS :

With Visual Studio 2022, you can only build drivers for Windows 10 and later.

This means everything is well, and the driver is loaded. To confirm, we can open Process Explorer and
find the Sample.Sys driver image file. Figure 2-5 shows the details of the sample driver image loaded into
system space.

Figure 2-5: sample driver image loaded into system space

At this point, we can unload the driver using the following command:

sc stop sample

Behind the scenes, sc.exe calls the ControlService API with the SERVICE_CONTROL_STOP value. Unload-
ing the driver causes the Unload routine to be called, which at this time does nothing. You can verify the
driver is indeed unloaded by looking at Process Explorer again; the driver image entry should not be there
anymore.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 31

Simple Tracing

How can we know for sure that the DriverEntry and Unload routines actually executed? Let’s add basic
tracing to these functions. Drivers can use the DbgPrint function to output printf-style text that can be
viewed using the kernel debugger, or some other tool.

Here is updated versions for DriverEntry and the Unload routine that use DbgPrint to trace the fact their
code executed:

void SampleUnload(PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

DbgPrint("Sample driver Unload called\n");

}

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = SampleUnload;

DbgPrint("Sample driver initialized successfully\n");

return STATUS_SUCCESS;

}

Amore typical approach is to have these outputs in Debug builds only. This is because Dbgprint has some
overhead that you may want to avoid in Release builds. KdPrint is a macro that is only compiled in Debug
builds and calls the underlying DbgPrint kernel API. Here is a revised version that uses KdPrint:

void SampleUnload(PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

KdPrint(("Sample driver Unload called\n"));

}

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = SampleUnload;

KdPrint(("Sample driver initialized successfully\n"));

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 32

return STATUS_SUCCESS;

}

Notice the double parenthesis when using KdPrint. This is required because KdPrint is a macro, but
apparently accepts any number of arguments, a-la printf. Since macros cannot receive a variable number
of parameters, a compiler trick is used to call the DbgPrint function that does accept a variable number
of parameters.

With these statements in place, we would like to load the driver again and see these messages. We’ll use a
kernel debugger in chapter 4, but for now we’ll use a useful Sysinternals tool named DebugView.
Before running DebugView, you’ll need to make some preparations. First, starting with Windows Vista,
DbgPrint output is not actually generated unless a certain value is in the registry. You’ll have to add
a key named Debug Print Filter under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager (the
key typically does not exist). Within this new key, add a DWORD value named DEFAULT (not the default
value that exists in any key) and set its value to 8 (technically, any value with bit 3 set will do). Figure 2-6
shows the setting in RegEdit. Unfortunately, you’ll have to restart the system for this setting to take effect.

Figure 2-6: Debug Print Filter key in the registry

Once this setting has been applied, run DebugView (DbgView.exe) elevated. In the Capture menu, make
sure Capture Kernel is selected (or press Ctrl+K). You can safely deselect Capture Win32 and Capture
Global Win32, so that user-mode output from various processes does not clutter the display.

DebugView is able to show kernel debug output evenwithout the Registry value shown in figure
2-6 if you select Enable Verbose Kernel Output from its Capture menu. However, it seems this
option does not work on Windows 11, and the Registry setting is necessary.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 2: Getting Started with Kernel Development 33

Build the driver, if you haven’t already. Now you can load the driver again from an elevated command
window (sc start sample). You should see output in DebugView as shown in figure 2-7. If you unload
the driver, you’ll see another message appearing because the Unload routine was called. (The third output
line is from another driver and has nothing to do with our sample driver)

Figure 2-7: Sysinternals DebugView Output

Add code to the sample DriverEntry to output the Windows OS version: major, minor, and
build number. Use the RtlGetVersion function to retrieve the information. Check the results
with DebugView.

Summary

We’ve seen the tools you need to have for kernel development and wrote a very minimalistic driver to
prove the basic tools work. In the next chapter, we’ll look at the fundamental building blocks of kernel
APIs, concepts, and fundamental structures.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics
In this chapter, we’ll dig deeper into kernel APIs, structures, and definitions. We’ll also examine some of
the mechanisms that invoke code in a driver. Finally, we’ll put all that knowledge together to create our
first functional driver and client application.

In this chapter:

• General Kernel Programming Guidelines
• Debug vs. Release Builds
• The Kernel API
• Functions and Error Codes
• Strings
• Dynamic Memory Allocation
• Linked Lists
• Object Attributes
• The Driver Object
• Device Objects

General Kernel Programming Guidelines

Developing kernel drivers requires the Windows Driver Kit (WDK), where the appropriate headers and
libraries needed are located. The kernel APIs consist of C functions, very similar in essence to user-mode
APIs. There are several differences, however. Table 3-1 summarizes the important differences between
user-mode programming and kernel-mode programming.

Table 3-1: Differences between user mode and kernel mode development

User Mode Kernel Mode

Unhandled Exceptions Unhandled exceptions crash the process Unhandled exceptions crash the system

Termination When a process terminates, all private
memory and resources are freed
automatically

If a driver unloads without freeing
everything it was using, there is a leak,
only resolved in the next boot

Return values API errors are sometimes ignored Should (almost) never ignore errors

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 35

Table 3-1: Differences between user mode and kernel mode development

User Mode Kernel Mode

IRQL Always PASSIVE_LEVEL (0) May be DISPATCH_LEVEL (2) or higher

Bad coding Typically localized to the process Can have system-wide effects

Testing and Debugging Typical testing and debugging done on
the developer’s machine

Debugging must be done with another
machine

Libraries Can use almost any C/C++ library (e.g.
STL, boost)

Most standard libraries cannot be used

Exception Handling Can use C++ exceptions or Structured
Exception Handling (SEH)

Only SEH can be used

C++ Usage Full C++ runtime available No C++ runtime

Unhandled Exceptions

Exceptions occurring in user-mode that are not caught by the program cause the process to terminate
prematurely. Kernel-mode code, on the other hand, being implicitly trusted, cannot recover from an
unhandled exception. Such an exception causes the system to crash with the infamous Blue screen of
death (BSOD) (newer versions of Windows have more diverse colors for the crash screen). The BSODmay
first appear to be a form of punishment, but it’s essentially a protection mechanism. The rationale being
it, is that allowing the code to continue execution could cause irreversible damage to Windows (such as
deleting important files or corrupting the registry) that may cause the system to fail boot. It’s better, then,
to stop everything immediately to prevent potential damage. We’ll discuss the BSOD in more detail in
chapter 6.

All this leads to at least one conclusion: kernel code must be meticulously programmed, and no details like
error checking should be skipped.

Termination

When a process terminates, for whatever reason - either normally, because of an unhandled exception,
or terminated by external code - it never leaks anything: all private memory is freed, and all handles are
closed. Of course, premature handle closing may cause some loss of data, such as a file handle being closed
before flushing some data to disk - but there are no resource leaks beyond the lifetime of the process; this
is guaranteed by the kernel.

Kernel drivers, on the other hand, don’t provide such a guarantee. If a driver unloads while still holding
onto allocated memory or open kernel handles - these resources will not be freed automatically, only
released at the next system boot.

Why is that? Can’t the kernel keep track of a driver’s allocations and resource usage so these can be freed
automatically when the driver unloads?
Theoretically, this would have been possible to achieve (although currently the kernel does not track such
resource usage). The real issue is that it would be too dangerous for the kernel to attempt such cleanup.
The kernel has no way of knowing whether the driver leaked those resources for a reason; for example, the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 36

driver could allocate some buffer and then pass it to another driver, with which it cooperates. That second
driver may use the memory buffer and free it eventually. If the kernel attempted to free the buffer when
the first driver unloads, the second driver would cause an access violation when accessing that now-freed
buffer, causing a system crash.

This emphasizes the responsibility of a kernel driver to properly clean up allocated resources; no one else
will do it.

Function Return Values

In typical user-mode code, return values from API functions are sometimes ignored, the developer being
somewhat optimistic that the called function is unlikely to fail. This may or may not be appropriate for
one function or another, but in the worst case, an unhandled exception would later crash the process; the
system, however, remains intact.

Ignoring return values from kernel APIs is much more dangerous (see the previous Termination section),
and generally should be avoided. Even seemingly “innocent” looking functions can fail for unexpected
reasons, so the golden rule here is - always check return status values from kernel APIs.

IRQL

Interrupt Request Level (IRQL) is an important kernel concept that will be further discussed in chapter 6.
Suffice it to say at this point that normally a processor’s IRQL is zero, and in particular it’s always zero
when user-mode code is executing. In kernel mode, it’s still zero most of the time - but not all the time.
Some restrictions on code execution exist at IRQL 2 and higher, which means the driver writer must be
careful to use only allowed APIs at that high IRQL. The effects of higher than zero IRQLs are discussed in
chapter 6.

C++ Usage

In user mode programming, C++ has been used for many years, and it works well when combined with
user-mode Windows APIs. With kernel code, Microsoft started officially supporting C++ with Visual
Studio 2012 and WDK 8. C++ is not mandatory, of course, but it has some important benefits related
to resource cleanup, with a C++ idiom called Resource Acquisition Is Initialization (RAII). We’ll use this
RAII idiom quite a bit to make sure we don’t leak resources.

C++ as a language is almost fully supported for kernel code. But there is no C++ runtime in the kernel,
and so some C++ features just cannot be used:

• The new and delete operators are not supported and will fail to compile. This is because their
normal operation is to allocate from a user-mode heap, which is irrelevant within the kernel. The
kernel API has “replacement” functions that are more closely modeled after the C functions malloc
and free. We’ll discuss these functions later in this chapter. It is possible, however, to overload
the new and delete operators similarly as is sometimes done in user-mode, and invoke the kernel
allocation and free functions in the implementation. We’ll see how to do that later in this chapter
as well.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 37

• Global variables that have non-default constructors will not be called - there is no C/C++ runtime
to call these constructors. These situations must be avoided, but there are some workarounds:

– Avoid any code in the constructor and instead create some Init function to be called explicitly
from driver code (e.g. from DriverEntry).

– Allocate a pointer only as a global (or static) variable, and create the actual instance dynam-
ically. The compiler will generate the correct code to invoke the constructor. This works
assuming the new and delete operators have been overloaded, as described later in this
chapter.

• The C++ exception handling keywords (try, catch, throw) do not compile. This is because the C++
exception handling mechanism requires its own runtime, which is not present in the kernel. Excep-
tion handling can only be done using Structured Exception Handling (SEH) - a kernel mechanism
to handle exceptions. We’ll take a detailed look at SEH in chapter 6.

• The standard C++ libraries are not available in the kernel. Although most are template-based, these
do not compile, because they may depend on user-mode libraries and semantics. That said, C++
templates as a language feature work just fine. One good usage of templates is to create alternatives
for a kernel-mode library types, based on similar types from the user-mode standard C++ library,
such as std::vector<>, std::wstring, etc.

The code examples in this book make some use of C++. The features mostly used in the code examples
are:

• The nullptr keyword, representing a true NULL pointer.
• The auto keyword that allows type inferencewhen declaring and initializing variables. This is useful
to reduce clutter, save some typing, and focus on the important pieces.

• Templates will be used where they make sense.
• Overloading of the new and delete operators.
• Constructors and destructors, especially for building RAII types.

Any C++ standard can be used for kernel development. The Visual Studio setting for new projects is to
use C++ 14. However, you can change the C++ compiler standard to any other setting, including C++ 20
(the latest standard as of this writing). Some features we’ll use later will depend on C++ 17 at least.

Strictly speaking, kernel drivers can be written in pure C without any issues. If you prefer to go that route,
use files with a C extension rather than CPP. This will automatically invoke the C compiler for these files.

Testing and Debugging

With user-mode code, testing is generally done on the developer’s machine (if all required dependencies
can be satisfied). Debugging is typically done by attaching the debugger (Visual Studio in most cases) to
the running process or launching an executable and attaching to the process.

With kernel code, testing is typically done on another machine, usually a virtual machine hosted on
the developer’s machine. This ensures that if a BSOD occurs, the developer’s machine is unaffected.
Debugging kernel code must be done with another machine, where the actual driver is executing. This
is because hitting a breakpoint in kernel-mode freezes the entire machine, not just a particular process.
The developer’s machine hosts the debugger itself, while the second machine (again, usually a virtual
machine) executes the driver code. These two machines must be connected through some mechanism
so data can flow between the host (where the debugger is running) and the target. We’ll look at kernel
debugging in more detail in chapter 5.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 38

Debug vs. Release Builds

Just like with user-mode projects, building kernel drivers can be done in Debug or Release mode. The
differences are similar to their user-mode counterparts - Debug builds use no compiler optimizations by
default, but are easier to debug. Release builds utilize full compiler optimizations by default to produce
the fastest and smallest code possible. There are a few differences, however.

The terms in kernel terminology are Checked (Debug) and Free (Release). Although Visual Studio kernel
projects continue to use the Debug/Release terms, older documentation uses the Checked/Free terms. From
a compilation perspective, kernel Debug builds define the symbol DBG and set its value to 1 (compared to
the _DEBUG symbol defined in user mode). This means you can use the DBG symbol to distinguish between
Debug and Release builds with conditional compilation. This is, for example, what the KdPrint macro
does: in Debug builds, it compiles to calling DbgPrint, while in Release builds it compiles to nothing,
resulting in KdPrint calls having no effect in Release builds. This is usually what you want because these
calls are relatively expensive. We’ll discuss other ways of logging information in chapter 5.

The Kernel API

Kernel drivers use exported functions from kernel components. These functions will be referred to as the
Kernel API. Most functions are implemented within the kernel module itself (NtOskrnl.exe), but some may
be implemented by other kernel modules, such the HAL (hal.dll).

The Kernel API is a large set of C functions. Most of these start with a prefix suggesting the component
implementing that function. Table 3-2 shows some of the common prefixes and their meaning:

Table 3-2: Common kernel API prefixes

Prefix Meaning Example

Ex General executive functions ExAllocatePoolWithTag

Ke General kernel functions KeAcquireSpinLock

Mm Memory manager MmProbeAndLockPages

Rtl General runtime library RtlInitUnicodeString

FsRtl file system runtime library FsRtlGetFileSize

Flt file system mini-filter library FltCreateFile

Ob Object manager ObReferenceObject

Io I/O manager IoCompleteRequest

Se Security SeAccessCheck

Ps Process manager PsLookupProcessByProcessId

Po Power manager PoSetSystemState

Wmi Windows management instrumentation WmiTraceMessage

Zw Native API wrappers ZwCreateFile

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 39

Table 3-2: Common kernel API prefixes

Prefix Meaning Example

Hal Hardware abstraction layer HalExamineMBR

Cm Configuration manager (registry) CmRegisterCallbackEx

If you take a look at the exported functions list from NtOsKrnl.exe, you’ll find many functions that are
not documented in the Windows Driver Kit; this is just a fact of a kernel developer’s life - not everything
is documented.

One set of functions bears discussion at this point - the Zw prefixed functions. These functions mirror
native APIs available as gateways from NtDll.Dll with the actual implementation provided by the Exec-
utive. When an Nt function is called from user mode, such as NtCreateFile, it reaches the Executive at
the actual NtCreateFile implementation. At this point, NtCreateFilemight do various checks based on
the fact that the original caller is from user mode. This caller information is stored on a thread-by-thread
basis, in the undocumented PreviousMode member in the KTHREAD structure for each thread.

You can query the previous processor mode by calling the documented ExGetPreviousMode API.

On the other hand, if a kernel driver needs to call a system service, it should not be subjected to the
same checks and constraints imposed on user-mode callers. This is where the Zw functions come into play.
Calling a Zw function sets the previous caller mode to KernelMode (0) and then invokes the native function.
For example, calling ZwCreateFile sets the previous caller to KernelMode and then calls NtCreateFile,
causing NtCreateFile to bypass some security and buffer checks that would otherwise be performed. The
bottom line is that kernel drivers should call the Zw functions unless there is a compelling reason to do
otherwise.

Functions and Error Codes

Most kernel API functions return a status indicating success or failure of an operation. This is typed as
NTSTATUS, a signed 32-bit integer. The value STATUS_SUCCESS (0) indicates success. A negative value
indicates some kind of error. You can find all the defined NTSTATUS values in the file <ntstatus.h>.

Most code paths don’t care about the exact nature of the error, and so testing the most significant bit is
enough to find out whether an error occurred. This can be done with the NT_SUCCESS macro. Here is an
example that tests for failure and logs an error if that is the case:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 40

NTSTATUS DoWork() {

NTSTATUS status = CallSomeKernelFunction();

if(!NT_SUCCESS(status)) {

KdPrint((L"Error occurred: 0x%08X\n", status));

return status;

}

// continue with more operations

return STATUS_SUCCESS;

}

In some cases, NTSTATUS values are returned from functions that eventually bubble up to user mode. In
these cases, the STATUS_xxx value is translated to some ERROR_yyy value that is available to user-mode
through the GetLastError function. Note that these are not the same numbers; for one, error codes in
user-mode have positive values (zero is still success). Second, the mapping is not one-to-one. In any case,
this is not generally a concern for a kernel driver.

Internal kernel driver functions also typically return NTSTATUS to indicate their success/failure status. This
is usually convenient, as these functionsmake calls to kernel APIs and so can propagate any error by simply
returning the same status they got back from the particular API. This also implies that the “real” return
values from driver functions is typically returned through pointers or references provided as arguments
to the function.

Return NTSTATUS from your own functions. It will make it easier and consistent to report errors.

Strings

The kernel API uses strings in many scenarios as needed. In some cases, these strings are simple Unicode
pointers (wchar_t* or one of their typedefs such as WCHAR*), but most functions dealing with strings
expect a structure of type UNICODE_STRING.

The termUnicode as used in this book is roughly equivalent to UTF-16, whichmeans 2 bytes per character.
This is how strings are stored internally within kernel components.Unicode in general is a set of standards
related to character encoding. You can find more information at https://unicode.org.

The UNICODE_STRING structure represents a string with its length and maximum length known. Here is a
simplified definition of the structure:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://unicode.org

Chapter 3: Kernel Programming Basics 41

typedef struct _UNICODE_STRING {

USHORT Length;

USHORT MaximumLength;

PWCH Buffer;

} UNICODE_STRING;

typedef UNICODE_STRING *PUNICODE_STRING;

typedef const UNICODE_STRING *PCUNICODE_STRING;

The Length member is in bytes (not characters) and does not include a Unicode-NULL terminator, if one
exists (a NULL terminator is not mandatory). The MaximumLengthmember is the number of bytes the string
can grow to without requiring a memory reallocation.

Manipulating UNICODE_STRING structures is typically done with a set of Rtl functions that deal specifically
with strings. Table 3-3 lists some of the common functions for string manipulation provided by the Rtl
functions.

Table 3-3: Common UNICODE_STRING functions

Function Description

RtlInitUnicodeString Initializes a UNICODE_STRING based on an existing C-string pointer. It
sets Buffer, then calculates the Length and sets MaximumLength to the
same value. Note that this function does not allocate any memory - it
just initializes the internal members.

RtlCopyUnicodeString Copies one UNICODE_STRING to another. The destination string pointer
(Buffer) must be allocated before the copy and MaximumLength set
appropriately.

RtlCompareUnicodeString Compares two UNICODE_STRINGs (equal, less, greater), specifying
whether to do a case sensitive or insensitive comparison.

RtlEqualUnicodeString Compares two UNICODE_STRINGs for equality, with case sensitivity
specification.

RtlAppendUnicodeStringToString Appends one UNICODE_STRING to another.

RtlAppendUnicodeToString Appends UNICODE_STRING to a C-style string.

In addition to the above functions, there are functions that work on C-string pointers. Moreover, some of
the well-known string functions from the C Runtime Library are implemented within the kernel as well
for convenience: wcscpy_s, wcscat_s, wcslen, wcschr, strcpy, strcpy_s and others.

Thewcs prefixworkswith CUnicode strings, while the str prefixworkswith CAnsi strings. The
suffix _s in some functions indicates a safe function, where an additional argument indicating
the maximum length of the string must be provided so the function would not transfer more
data than that size.

Never use the non-safe functions. You can include <dontuse.h> to get errors for deprecated
functions if you do use these in code.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 42

Dynamic Memory Allocation

Drivers often need to allocate memory dynamically. As discussed in chapter 1, kernel thread stack size is
rather small, so any large chunk of memory should be allocated dynamically.

The kernel provides two general memory pools for drivers to use (the kernel itself uses them as well).

• Paged pool - memory pool that can be paged out if required.
• Non-Paged Pool - memory pool that is never paged out and is guaranteed to remain in RAM.

Clearly, the non-paged pool is a “better” memory pool as it can never incur a page fault. We’ll see later in
this book that some cases require allocating from non-paged pool. Drivers should use this pool sparingly,
only when necessary. In all other cases, drivers should use the paged pool. The POOL_TYPE enumeration
represents the pool types. This enumeration includes many “types” of pools, but only three should be used
by drivers: PagedPool, NonPagedPool, NonPagedPoolNx (non-page pool without execute permissions).

Table 3-4 summarizes the most common functions used for working with the kernel memory pools.

Table 3-4: Functions for kernel memory pool allocation

Function Description

ExAllocatePool Allocate memory from one of the pools with a default tag. This function is
considered obsolete. The next function in this table should be used instead

ExAllocatePoolWithTag Allocate memory from one of the pools with the specified tag

ExAllocatePoolZero Same as ExAllocatePoolWithTag, but zeroes out the memory block

ExAllocatePoolWithQuotaTag Allocate memory from one of the pools with the specified tag and charge the
current process quota for the allocation

ExAllocatePool2 New function in Windows 10 version 1909 and later, to replace
ExAllocatePoolWithTag

ExAllocatePool3 New function in Windows 10 version 1909 and later, to serve as the ultimate
API

ExFreePool Free an allocation. The function knows from which pool the allocation was
made

ExAllocatePool calls ExAllocatePoolWithTag using the tag enoN (the word “none” in
reverse). Older Windows versions used ‘ mdW (WDM in reverse). You should avoid
this function and use ExAllocatePoolWithTag‘ instead.

ExAllocatePoolZero is implemented inline in wdm.h by calling ExAllocatePoolWithTag
and adding the POOL_ZERO_ALLOCATION (=1024) flag to the pool type.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 43

ExAllocatePool2 and ExAllocatePool3, and other management functions are covered in chapter 8,
“Advanced Programming Techniques”.

The tag argument allows “tagging” an allocation with a 4-byte value. Typically this value is comprised
of up to 4 ASCII characters logically identifying the driver, or some part of the driver. These tags can be
used to help identify memory leaks - if any allocations tagged with the driver’s tag remain after the driver
is unloaded. These pool allocations (with their tags) can be viewed with the Poolmon WDK tool, or my
own PoolMonXv2 tool (downloadable from http://www.github.com/zodiacon/AllTools). Figure 3-1 shows
a screenshot of PoolMonXv2.

Figure 3-1: PoolMonXv2

You must use tags comprised of printable ASCII characters. Otherwise, running the driver
under the control of the Driver Verifier (described in chapter 11) would lead to Driver Verifier
complaining.

The following code example shows memory allocation and string copying to save the registry path passed
to DriverEntry, and freeing that string in the Unload routine:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

http://www.github.com/zodiacon/AllTools

Chapter 3: Kernel Programming Basics 44

// define a tag (because of little endianness, viewed as 'abcd')

#define DRIVER_TAG 'dcba'

UNICODE_STRING g_RegistryPath;

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(DriverObject);

DriverObject->DriverUnload = SampleUnload;

g_RegistryPath.Buffer = (WCHAR*)ExAllocatePoolWithTag(PagedPool,

RegistryPath->Length, DRIVER_TAG);

if (g_RegistryPath.Buffer == nullptr) {

KdPrint(("Failed to allocate memory\n"));

return STATUS_INSUFFICIENT_RESOURCES;

}

g_RegistryPath.MaximumLength = RegistryPath->Length;

RtlCopyUnicodeString(&g_RegistryPath,

(PCUNICODE_STRING)RegistryPath);

// %wZ is for UNICODE_STRING objects

KdPrint(("Original registry path: %wZ\n", RegistryPath));

KdPrint(("Copied registry path: %wZ\n", &g_RegistryPath));

//...

return STATUS_SUCCESS;

}

void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

ExFreePool(g_RegistryPath.Buffer);

KdPrint(("Sample driver Unload called\n"));

}

Linked Lists

The kernel uses circular doubly linked lists inmany of its internal data structures. For example, all processes
on the system are managed by EPROCESS structures, connected in a circular doubly linked list, where its
head is stored in the kernel variable PsActiveProcessHead.

All these lists are built in the same way, centered around the LIST_ENTRY structure defined like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 45

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

Figure 3-2 depicts an example of such a list containing a head and three instances.

Figure 3-2: Circular linked list

One such structure is embedded inside the real structure of interest. For example, in the EPROCESS structure,
the member ActiveProcessLinks is of type LIST_ENTRY, pointing to the next and previous LIST_ENTRY
objects of other EPROCESS structures. The head of a list is stored separately; in the case of the process,
that’s PsActiveProcessHead.
To get the pointer to the actual structure of interest given the address of a LIST_ENTRY can be obtained
with the CONTAINING_RECORD macro.

For example, suppose you want to manage a list of structures of typeMyDataItem defined like so:

struct MyDataItem {

// some data members

LIST_ENTRY Link;

// more data members

};

When working with these linked lists, we have a head for the list, stored in a variable. This means that
natural traversal is done by using the Flinkmember of the list to point to the next LIST_ENTRY in the list.
Given a pointer to the LIST_ENTRY, what we’re really after is the MyDataItem that contains this list entry
member. This is where the CONTAINING_RECORD comes in:

MyDataItem* GetItem(LIST_ENTRY* pEntry) {

return CONTAINING_RECORD(pEntry, MyDataItem, Link);

}

The macro does the proper offset calculation and does the casting to the actual data type (MyDataItem in
the example).

Table 3-5 shows the common functions for working with these linked lists. All operations use constant
time.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 46

Table 3-5: Functions for working with circular linked lists

Function Description

InitializeListHead Initializes a list head to make an empty list. The forward and back pointers
point to the forward pointer.

InsertHeadList Insert an item to the head of the list.

InsertTailList Insert an item to the tail of the list.

IsListEmpty Check if the list is empty.

RemoveHeadList Remove the item at the head of the list.

RemoveTailList Remove the item at the tail of the list.

RemoveEntryList Remove a specific item from the list.

ExInterlockedInsertHeadList Insert an item at the head of the list atomically by using the specified
spinlock.

ExInterlockedInsertTailList Insert an item at the tail of the list atomically by using the specified spinlock.

ExInterlockedRemoveHeadList Remove an item from the head of the list atomically by using the specified
spinlock.

The last three functions in table 3-4 perform the operation atomically using a synchronization primitive
called a spin lock. Spin locks are discussed in chapter 6.

The Driver Object

We’ve already seen that the DriverEntry function accepts two arguments, the first is a driver object
of some kind. This is a semi-documented structure called DRIVER_OBJECT defined in the WDK headers.
“Semi-documented” means that some of its members are documented for driver’s use and some are not.
This structure is allocated by the kernel and partially initialized. Then it’s provided to DriverEntry (and
before the driver unloads to the Unload routine as well). The role of the driver at this point is to further
initialize the structure to indicate what operations are supported by the driver.

We’ve seen one such “operation” in chapter 2 - the Unload routine. The other important set of opera-
tions to initialize are called Dispatch Routines. This is an array of function pointers, stored in the in the
MajorFunctionmember of DRIVER_OBJECT. This set specifies which operations the driver supports, such
as Create, Read, Write, and so on. These indices are defined with the IRP_MJ_ prefix. Table 3-6 shows
some common major function codes and their meaning.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 47

Table 3-6: Common major function codes

Major function Description

IRP_MJ_CREATE (0) Create operation. Typically invoked for CreateFile or
ZwCreateFile calls.

IRP_MJ_CLOSE (2) Close operation. Normally invoked for CloseHandle or ZwClose.

IRP_MJ_READ (3) Read operation. Typically invoked for ReadFile, ZwReadFile and
similar read APIs.

IRP_MJ_WRITE (4) Write operation. Typically invoked for WriteFile, ZwWriteFile,
and similar write APIs.

IRP_MJ_DEVICE_CONTROL (14) Generic call to a driver, invoked because of DeviceIoControl or
ZwDeviceIoControlFile calls.

IRP_MJ_INTERNAL_DEVICE_CONTROL (15) Similar to the previous one, but only available for kernel-mode
callers.

IRP_MJ_SHUTDOWN (16) Called when the system shuts down if the driver has registered for
shutdown notification with IoRegisterShutdownNotification.

IRP_MJ_CLEANUP (18) Invoked when the last handle to a file object is closed, but the file
object’s reference count is not zero.

IRP_MJ_PNP (31) Plug and play callback invoked by the Plug and Play Manager.
Generally interesting for hardware-based drivers or filters to such
drivers.

IRP_MJ_POWER (22) Power callback invoked by the Power Manager. Generally
interesting for hardware-based drivers or filters to such drivers.

Initially, the MajorFunction array is initialized by the kernel to point to a kernel internal routine,
IopInvalidDeviceRequest, which returns a failure status to the caller, indicating the operation is not
supported. This means the driver, in its DriverEntry routine only needs to initialize the actual operations
it supports, leaving all the other entries in their default values.

For example, our Sample driver at this point does not support any dispatch routines, which means there
is no way to communicate with the driver. A driver must at least support the IRP_MJ_CREATE and IRP_-
MJ_CLOSE operations, to allow opening a handle to one of the device objects for the driver. We’ll put these
ideas into practice in the next chapter.

Object Attributes

One of the common structures that shows up in many kernel APIs is OBJECT_ATTRIBUTES, defined like
so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 48

typedef struct _OBJECT_ATTRIBUTES {

ULONG Length;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor; // SECURITY_DESCRIPTOR

PVOID SecurityQualityOfService; // SECURITY_QUALITY_OF_SERVICE

} OBJECT_ATTRIBUTES;

typedef OBJECT_ATTRIBUTES *POBJECT_ATTRIBUTES;

typedef CONST OBJECT_ATTRIBUTES *PCOBJECT_ATTRIBUTES;

The structure is typically initialized with the InitializeObjectAttributes macro, that allows specify-
ing all the structure members except Length (set automatically by the macro), and
SecurityQualityOfService, which is not normally needed. Here is the description of the members:

• ObjectName is the name of the object to be created/located, provided as a pointer to a UNICODE_-
STRING. In some cases it may be ok to set it to NULL. For example, the ZwOpenProcess allows opening
a handle to a process given its PID. Since processes don’t have names, the ObjectName in this case
should be initialized to NULL.

• RootDirectory is an optional directory in the object manager namespace if the name of the object
is relative one. If ObjectName specifies a fully-qualified name, RootDirectory should be set to
NULL.

• Attributes allows specifying a set of flags that have effect on the operation in question. Table 3-7
shows the defined flags and their meaning.

• SecurityDescriptor is an optional security descriptor (SECURITY_DESCRIPTOR) to set on the
newly created object. NULL indicates the new object gets a default security descriptor, based on the
caller’s token.

• SecurityQualityOfService is an optional set of attributes related to the new object’s imper-
sonation level and context tracking mode. It has no meaning for most object types. Consult the
documentation for more information.

Table 3-7: Object attributes flags

Flag (OBJ_) Description

INHERIT (2) The returned handle should be marked as inheritable

PERMANENT (0x10) The object created should be marked as permanent. Permanent
objects have an additional reference count that prevents them
from dying even if all handles to them are closed

EXCLUSIVE (0x20) If creating an object, the object is created with exclusive access.
No other handles can be opened to the object. If opening an
object, exclusive access is requested, which is granted only if the
object was originally created with this flag

CASE_INSENSITIVE (0x40) When opening an object, perform a case insensitive search for its
name. Without this flag, the name must match exactly

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 49

Table 3-7: Object attributes flags

Flag (OBJ_) Description

OPENIF (0x80) Open the object if it exists. Otherwise, fail the operation (don’t
create a new object)

OPENLINK (0x100) If the object to open is a symbolic link object, open the symbolic
link object itself, rather than following the symbolic link to its
target

KERNEL_HANDLE (0x200) The returned handle should be a kernel handle. Kernel handles
are valid in any process context, and cannot be used by user mode
code

FORCE_ACCESS_CHECK (0x400) Access checks should be performed even if the object is opened in
KernelMode access mode

IGNORE_IMPERSONATED_DEVICEMAP (0x800) Use the process device map instead of the user’s if it’s
impersonating (consult the documentation for more information
on device maps)

DONT_REPARSE (0x1000) Don’t follow a reparse point, if encountered. Instead an error is
returned (STATUS_REPARSE_POINT_ENCOUNTERED). Reparse points
are briefly discussed in chapter 11

A secondway to initialize an OBJECT_ATTRIBUTES structure is available with the RTL_CONSTANT_OBJECT_-
ATTRIBUTES macro, that uses the most common members to set - the object’s name and the attributes.

Let’s look at a couple of examples that use OBJECT_ATTRIBUTES. The first one is a function that opens a
handle to a process given its process ID. For this purpose, we’ll use the ZwOpenProcess API, defined like
so:

NTSTATUS ZwOpenProcess (

Out PHANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PCLIENT_ID ClientId);

It uses yet another common structure, CLIENT_ID that holds a process and/or a thread ID:

typedef struct _CLIENT_ID {

HANDLE UniqueProcess; // PID, not handle

HANDLE UniqueThread; // TID, not handle

} CLIENT_ID;

typedef CLIENT_ID *PCLIENT_ID;

To open a process, we need to specify the process ID in the UniqueProcess member. Note that although
the type of UniqueProcess is HANDLE, it is the unique ID of the process. The reason for the HANDLE type
is that process and thread IDs are generated from a private handle table. This also explains why process
and thread IDs are always multiple of four (just like normal handles), and why they don’t overlap.

With these details at hand, here is a process opening function:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 50

NTSTATUS

OpenProcess(ACCESS_MASK accessMask, ULONG pid, PHANDLE phProcess) {

CLIENT_ID cid;

cid.UniqueProcess = ULongToHandle(pid);

cid.UniqueThread = nullptr;

OBJECT_ATTRIBUTES procAttributes =

RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, OBJ_KERNEL_HANDLE);

return ZwOpenProcess(phProcess, accessMask, &procAttributes, &cid);

}

The ULongToHandle function performs the required casts so that the compiler is happy (HANDLE is 64-bit
on a 64-bit system, but ULONG is always 32-bit). The only member used in the above code from OBJECT_-
ATTRIBUTES is the Attributes flags.

The second example is a function that opens a handle to a file for read access, by using the ZwOpenFile
API, defined like so:

NTSTATUS ZwOpenFile(

Out PHANDLE FileHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Out PIO_STATUS_BLOCK IoStatusBlock,

In ULONG ShareAccess,

In ULONG OpenOptions);

A full discussion of the parameters to ZwOpenFile is reserved for chapter 11, but one thing is obvious: the
file name itself is specified using the OBJECT_ATTRIBUTES structure - there is no separate parameter for
that. Here is the full function opening a handle to a file for read access:

NTSTATUS OpenFileForRead(PCWSTR path, PHANDLE phFile) {

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

OBJECT_ATTRIBUTES fileAttributes;

InitializeObjectAttributes(&fileAttributes, &name,

OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, nullptr, nullptr);

IO_STATUS_BLOCK ioStatus;

return ZwOpenFile(phFile, FILE_GENERIC_READ,

&fileAttributes, &ioStatus, FILE_SHARE_READ, 0);

}

InitializeObjectAttributes is used to initialize the OBJECT_ATTRIBUTES structure, although the RTL_-
CONSTANT_OBJECT_ATTRIBUTES could have been used just as well, since we’re only specifying the name
and attributes. Notice the need to turn the passed-in NULL-terminated C-string pointer into a UNICODE_-
STRING with RtlInitUnicodeString.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 51

Device Objects

Although a driver object may look like a good candidate for clients to talk to, this is not the case. The
actual communication endpoints for clients are device objects. Device objects are instances of the semi-
documented DEVICE_OBJECT structure. Without device objects, there is no one to talk to. This means that
at least one device object should be created by the driver and given a name, so that it may be contacted
by clients.

The CreateFile function (and its variants) accepts a first argument which is called “file name” in the
documentation, but really this should point to a device object’s name, where an actual file system file
is just one particular case. The name CreateFile is somewhat misleading - the word “file” here means
“file object”. Opening a handle to a file or device creates an instance of the kernel structure FILE_OBJECT,
another semi-documented structure.

More precisely, CreateFile accepts a symbolic link, a kernel object that knows how to point to another
kernel object. (You can think of a symbolic link as similar in principle to a file system shortcut.) All the
symbolic links that can be used from the user mode CreateFile or CreateFile2 calls are located in
the Object Manager directory named ??. You can see the contents of this directory with the Sysinternals
WinObj tool. Figure 3-3 shows this directory (named Global?? inWinObj).

Figure 3-3: Symbolic links directory inWinObj

Some of the names seem familiar, such as C:, Aux, Con, and others. Indeed, these are valid “file names”
for CreateFile calls. Other entries look like long cryptic strings, and these in fact are generated by the
I/O system for hardware-based drivers that call the IoRegisterDeviceInterface API. These types of
symbolic links are not useful for the purpose of this book.

Most of the symbolic links in the \?? directory point to an internal device name under the \Device directory.
The names in this directory are not directly accessible by user-mode callers. But they can be accessed by
kernel callers using the IoGetDeviceObjectPointer API.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 52

A canonical example is the driver for Process Explorer. When Process Explorer is launched with administra-
tor rights, it installs a driver. This driver gives Process Explorer powers beyond those that can be obtained
by user-mode callers, even if running elevated. For example, Process Explorer in its Threads dialog for a
process can show the complete call stack of a thread, including functions in kernel mode. This type of
information is not possible to obtain from user mode; its driver provides the missing information.

The driver installed by Process Explorer creates a single device object so that Process Explorer is able to
open a handle to that device and make requests. This means that the device object must be named, and
must have a symbolic link in the ?? directory; and it’s there, called PROCEXP152, probably indicating
driver version 15.2 (at the time of writing). Figure 3-4 shows this symbolic link inWinObj.

Figure 3-4: Process Explorer’s symbolic link inWinObj

Notice the symbolic link for Process Explorer’s device points to \Device\PROCEXP152, which is the internal
name only accessible to kernel callers (and the native APIs NtOpenFile and NtCreateFile, as shown in
the next section). The actual CreateFile call made by Process Explorer (or any other client) based on
the symbolic link must be prepended with \\.\. This is necessary so that the I/O manager’s parser will
not assume the string “PROCEXP152” refers to a file with no extension in the current directory. Here is
how Process Explorer would open a handle to its device object (note the double backslashes because of the
backslash being an escape character in C/C++):

HANDLE hDevice = CreateFile(L"\\\\.\\PROCEXP152",

GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING,

0, nullptr);

With C++ 11 and later, you can write strings without escaping the backslash character. The
device path in the above code can be written like so: LR"(\\.\PROCEXP152)". L indicates
Unicode (as always), while anything between R"(and)" is not escaped.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 53

You can try the above code yourself. If Process Explorer has run elevated at least once on the system
since boot, its driver should be running (you can verify with the tool itself), and the call to CreateFile
will succeed if the client is running elevated.

A driver creates a device object using the IoCreateDevice function. This function allocates and initializes
a device object structure and returns its pointer to the caller. The device object instance is stored in the
DeviceObject member of the DRIVER_OBJECT structure. If more than one device object is created, they
form a singly linked list, where the member NextDevice of the DEVICE_OBJECT points to the next device
object. Note that the device objects are inserted at the head of the list, so the first device object created is
stored last; its NextDevice points to NULL. These relationships are depicted in figure 3-5.

Figure 3-5: Driver and Device objects

Opening Devices Directly

The existence of a symbolic link makes it easy to open a handle to a device with the documented
CreateFile user-mode API (or from the ZwOpenFile API in the kernel). It is sometimes useful, however,
to be able to open device objects without going through a symbolic link. For example, a device object
might not have a symbolic link, because its driver decided (for whatever reason) not to provide one.

The native NtOpenFile (and NtCreateFile) function can be used to open a device object directly. Mi-
crosoft never recommends using native APIs, but this function is somewhat documented for user-mode
use . Its definition is available in the <Winternl.h> header file:

NTAPI NtOpenFile (

OUT PHANDLE FileHandle,

IN ACCESS_MASK DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes,

OUT PIO_STATUS_BLOCK IoStatusBlock,

IN ULONG ShareAccess,

IN ULONG OpenOptions);

Notice the similarity to the ZwOpenFilewe used in an earlier section - this is the same function prototype,
just invoked here from user mode, eventually to land at NtOpenFilewithin the I/O manager. The function
requires usage of an OBJECT_ATTRIBUTES structure, described earlier in this chapter.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 54

The above prototype uses old macros such as IN, OUT and others. These have been replaced by SAL
annotations. Unfortunately, some header files were not yet converted to SAL.

To demonstrate using NtOpenFile from user mode, we’ll create an application to play a single sound.
Normally, the BeepWindows user-mode API provides such a service:

BOOL Beep(

In DWORD dwFreq,

In DWORD dwDuration);

The function accepts the frequency to play (in Hertz), and the duration to play, in milliseconds. The
function is synchronous, meaning it does not return until the duration has elapsed.

The Beep API works by calling a device named \Device\Beep (you can find it in WinObj), but the beep
device driver does not create a symbolic link for it. However, we can open a handle to the beep device using
NtOpenFile. Then, to play a sound, we can use the DeviceIoContol function with the correct parameters.
Although it’s not too difficult to reverse engineer the beep driver workings, fortunately we don’t have to.
The SDK provides the <ntddbeep.h> file with the required definitions, including the device name itself.

We’ll start by creating a C++ Console application in Visual Studio. Before we get to the main function, we
need some #includes:

#include <Windows.h>

#include <winternl.h>

#include <stdio.h>

#include <ntddbeep.h>

<winternl.h> provides the definition for NtOpenFile (and related data structures), while <ntddbeep.h>
provides the beep-specific definitions.

Since we will be using NtOpenFile, we must also link against NtDll.Dll, which we can do by adding a
#pragma to the source code, or add the library to the linker settings in the project’s properties. Let’s go
with the former, as it’s easier, and is not tied to the project’s properties:

#pragma comment(lib, "ntdll")

Without the above linkage, the linker would issue an “unresolved external” error.

Now we can start writing main, where we accept optional command line arguments indicating the fre-
quency and duration to play:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 55

int main(int argc, const char* argv[]) {

printf("beep [<frequency> <duration_in_msec>]\n");

int freq = 800, duration = 1000;

if (argc > 2) {

freq = atoi(argv[1]);

duration = atoi(argv[2]);

}

The next step is to open the device handle using NtOpenFile:

HANDLE hFile;

OBJECT_ATTRIBUTES attr;

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\Device\\Beep");

InitializeObjectAttributes(&attr, &name, OBJ_CASE_INSENSITIVE,

nullptr, nullptr);

IO_STATUS_BLOCK ioStatus;

NTSTATUS status = ::NtOpenFile(&hFile, GENERIC_WRITE, &attr, &ioStatus, 0, 0);

The line to initialize the device name can be replaced with:

RtlInitUnicodeString(&name, DD_BEEP_DEVICE_NAME_U);

The DD_BEEP_DEVICE_NAME_U macro is conveniently supplied as part of <ntddbeep.h>.

If the call succeeds, we can play the sound. To do that, we call DeviceIoControl with a control code
defined in <ntddbeep.h> and use a structure defined there as well to fill in the frequency and duration:

if (NT_SUCCESS(status)) {

BEEP_SET_PARAMETERS params;

params.Frequency = freq;

params.Duration = duration;

DWORD bytes;

//

// play the sound

//

printf("Playing freq: %u, duration: %u\n", freq, duration);

::DeviceIoControl(hFile, IOCTL_BEEP_SET, ¶ms, sizeof(params),

nullptr, 0, &bytes, nullptr);

//

// the sound starts playing and the call returns immediately

// Wait so that the app doesn't close

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 3: Kernel Programming Basics 56

//

::Sleep(duration);

::CloseHandle(hFile);

}

The input buffer passed to DeviceIoControl should be a BEEP_SET_PARAMETERS structure, which we pass
in along with its size. The last piece of the puzzle is to use the Sleep API to wait based on the duration,
otherwise the handle to the device would be closed and the sound cut off.

Write an application that plays an array of sounds by leveraging the above code.

Summary

In this chapter, we looked at some of the fundamental kernel data structures, concepts, andAPIs. In the next
chapter, we’ll build a complete driver, and a client application, expanding on the information presented
thus far.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish
In this chapter, we’ll use many of the concepts we learned in previous chapters and build a simple, yet
complete, driver, and an associated client application, while filling in some of the missing details from
previous chapters. We’ll deploy the driver and use its capabilities - perform some operation in kernel
mode that is difficult, or impossible to do, in user mode.

In this chapter:

• Introduction
• Driver Initialization
• Client Code
• The Create and Close Dispatch Routines
• The Write Dispatch Routine
• Installing and Testing

Introduction

The problem we’ll solve with a simple kernel driver is the limited flexibility of setting thread priorities
using the Windows API. In user-mode, a thread’s priority is determined by a combination of its process
Priority Class with an offset on a per thread basis, that has a limited number of levels.

Changing a process priority class (shown as Base priority column in Task Manager) can be achieved with
the SetPriorityClass function that accepts a process handle and one of the six supported priority classes.
Each priority class corresponds to a priority level, which is the default priority for threads created in that
process. A particular thread’s priority can be changed with the SetThreadPriority function, accepting
a thread handle and one of several constants corresponding to offsets around the base priority class. Table
4-1 shows the available thread priorities based on the process priority class and the thread’s priority offset.

The values acceptable to SetThreadPriority specify the offset. Five levels correspond to the offsets -2
to +2: THREAD_PRIORITY_LOWEST (-2), THREAD_PRIORITY_BELOW_NORMAL (-1), THREAD_PRIORITY_NORMAL
(0), THREAD_PRIORITY_ABOVE_NORMAL (+1), THREAD_PRIORITY_HIGHEST (+2). The remaining two levels,
called Saturation levels, set the priority to the two extremes supported by that priority class: THREAD_-
PRIORITY_IDLE (-Sat) and THREAD_PRIORITY_TIME_CRITICAL (+Sat).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 58

Table 4-1: Legal values for thread priorities with the Windows APIs

Priority Class - Sat -2 -1 0 (default) +1 +2 + Sat Comments

Idle 1 2 3 4 5 6 15 Task Manager refers to Idle as Low

Below Normal 1 4 5 6 7 8 15

Normal 1 6 7 8 9 10 15

Above Normal 1 8 9 10 11 12 15

High 1 11 12 13 14 15 15 Only six levels are available (not
seven).

Real-time 16 22 23 24 25 26 31 All levels between 16 to 31 can be
selected.

The following code example changes the current thread’s priority to 11:

SetPriorityClass(GetCurrentProcess(),

ABOVE_NORMAL_PRIORITY_CLASS); // process base=10

SetThreadPriority(GetCurrentThread(),

THREAD_PRIORITY_ABOVE_NORMAL); // +1 offset for thread

The Real-time priority class does not imply Windows is a real-time OS; Windows does not
provide some of the timing guarantees normally provided by true real-time operating systems.
Also, since Real-time priorities are very high and compete with many kernel threads doing
important work, such a process must be running with administrator privileges; otherwise,
attempting to set the priority class to Real-time causes the value to be set to High.

There are other differences between the real-time priorities and the lower priority classes.
Consult theWindows Internals book for more information.

Table 4-1 shows the problem we will address quite clearly. Only a small set of priorities are available to
set directly. We would like to create a driver that would circumvent these limitations and allow setting a
thread’s priority to any number, regardless of its process priority class.

Driver Initialization

We’ll start building the driver in the same way we did in chapter 2. Create a new WDM Empty Project
named Booster (or another name of your choosing) and delete the INF file created by the wizard. Next, add
a new source file to the project, called Booster.cpp (or any other name you prefer). Add the basic #include
for the main WDK header and an almost empty DriverEntry:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 59

#include <ntddk.h>

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

return STATUS_SUCCESS;

}

Most software drivers need to do the following in DriverEntry:

• Set an Unload routine.
• Set dispatch routines the driver supports.
• Create a device object.
• Create a symbolic link to the device object.

Once all these operations are performed, the driver is ready to take requests.

The first step is to add an Unload routine and point to it from the driver object. Here is the new
DriverEntry with the Unload routine:

// prototypes

void BoosterUnload(PDRIVER_OBJECT DriverObject);

// DriverEntry

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

DriverObject->DriverUnload = BoosterUnload;

return STATUS_SUCCESS;

}

void BoosterUnload(PDRIVER_OBJECT DriverObject) {

// empty for now

}

We’ll add code to the Unload routine as needed when we do actual work in DriverEntry that needs to be
undone.

Next, we need to set up the dispatch routines that we want to support. Practically all drivers must support
IRP_MJ_CREATE and IRP_MJ_CLOSE, otherwise there would be no way to open a handle to any device for
this driver. So we add the following to DriverEntry:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 60

DriverObject->MajorFunction[IRP_MJ_CREATE] = BoosterCreateClose;

DriverObject->MajorFunction[IRP_MJ_CLOSE] = BoosterCreateClose;

We’re pointing the Create and Close major functions to the same routine. This is because, as we’ll see
shortly, they will do the same thing: simply approve the request. In more complex cases, these could be
separate functions, where in the Create case the driver can (for instance) check to see who the caller is and
only let approved callers succeed with opening a handle.

All major functions have the same prototype (they are part of an array of function pointers), so we have
to add a prototype for BoosterCreateClose. The prototype for these functions is as follows:

NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp);

The functionmust return NTSTATUS, and accepts a pointer to a device object and a pointer to an I/O Request
Packet (IRP). An IRP is the primary object where the request information is stored, for all types of requests.
We’ll dig deeper into an IRP in chapter 7, but we’ll look at the basics later in this chapter, since we require
it to complete our driver.

Passing Information to the Driver

The Create and Close operations we set up are required, but certainly not enough. We need a way to tell
the driver which thread and to what value to set its priority. From a user-mode client’s perspective, there
are three basic functions it can use: WriteFile, ReadFile, and DeviceIoControl.

For our driver’s purposes, we can use either WriteFile or DeviceIoControl. Read doesn’t make sense,
because we’re passing information to the driver, rather than from the driver. So which is better, WriteFile
or DeviceIoControl? This is mostly a matter of taste, but the general wisdom here is to use Write if it’s
really a write operation (logically); for anything else - DeviceIoControl is preferred, as it’s a generic
mechanism for passing data to and from the driver.

Since changing a thread’s priority is not a purely Write operation, DeviceIoControl makes more sense,
but we’ll use WriteFile, as it’s a bit easier to handle. We’ll look at all the details in chapter 7. WriteFile
has the following prototype:

BOOL WriteFile(

In HANDLE hFile,

_In_reads_bytes_opt_(nNumberOfBytesToWrite) LPCVOID lpBuffer,

In DWORD nNumberOfBytesToWrite,

_Out_opt_ LPDWORD lpNumberOfBytesWritten,

_Inout_opt_ LPOVERLAPPED lpOverlapped);

Our driver has to export its handling of a write operation capability by assigning a function pointer to the
IRP_MJ_WRITE index of the MajorFunction array in the driver object:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 61

DriverObject->MajorFunction[IRP_MJ_WRITE] = BoosterWrite;

BoosterWrite must have the same prototype as all major function code handlers:

NTSTATUS BoosterWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp);

Client / Driver Communication Protocol

Given that we use WriteFile for client/driver communication, we now must define the actual semantics.
WriteFile allows passing in a buffer, for which we need to define proper semantics. This buffer should
contain the two pieces of information required so the driver can do its thing: the thread id and the priority
to set for it.

These pieces of information must be usable both by the driver and the client. The client would supply the
data, and the driver would act on it. This means these definitions must be in a separate file that must be
included by both the driver and client code.

For this purpose, we’ll add a header file named BoosterCommon.h to the driver project. This file will also
be used later by the user-mode client.

Within this file, we need to define the data structure to pass to the driver in the WriteFile buffer,
containing the thread ID and the priority to set:

struct ThreadData {

ULONG ThreadId;

int Priority;

};

We need the thread’s unique ID and the target priority. Thread IDs are 32-bit unsigned integers, so we
select ULONG as the type. The priority should be a number between 1 and 31, so a simple 32-bit integer will
do.

We cannot normally use DWORD - a common type defined in user mode headers - because it’s not defined
in kernel mode headers. ULONG, on the other hand, is defined in both. It would be easy enough to define
it ourselves, but ULONG is the same anyway.

Creating the Device Object

We have more initializations to do in DriverEntry. Currently, we don’t have any device object and so
there is noway to open a handle and reach the driver. A typical software driver needs just one device object,
with a symbolic link pointing to it, so that user-mode clients can obtain handles easily with CreateFile.

Creating the device object requires calling the IoCreateDevice API, declared as follows (some SAL
annotations omitted/simplified for clarity):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 62

NTSTATUS IoCreateDevice(

In PDRIVER_OBJECT DriverObject,

In ULONG DeviceExtensionSize,

_In_opt_ PUNICODE_STRING DeviceName,

In DEVICE_TYPE DeviceType,

In ULONG DeviceCharacteristics,

In BOOLEAN Exclusive,

Outptr PDEVICE_OBJECT *DeviceObject);

The parameters to IoCreateDevice are described below:

• DriverObject - the driver object to which this device object belongs to. This should be simply the
driver object passed to the DriverEntry function.

• DeviceExtensionSize - extra bytes that would be allocated in addition to sizeof(DEVICE_OBJECT).
Useful for associating some data structure with a device. It’s less useful for software drivers creating
just a single device object, since the state needed for the device can simply be managed by global
variables.

• DeviceName - the internal device name, typically created under the \Device Object Manager direc-
tory.

• DeviceType - relevant to some type of hardware-based drivers. For software drivers, the value FILE_-
DEVICE_UNKNOWN should be used.

• DeviceCharacteristics - a set of flags, relevant for some specific drivers. Software drivers specify
zero or FILE_DEVICE_SECURE_OPEN if they support a true namespace (rarely needed by software
drivers). More information on device security is presented in chapter 8.

• Exclusive - should more than one file object be allowed to open the same device?Most drivers should
specify FALSE, but in some cases TRUE is more appropriate; it forces a single client at a time for the
device.

• DeviceObject - the returned pointer, passed as an address of a pointer. If successful, IoCreateDevice
allocates the structure from non-paged pool and stores the resulting pointer inside the dereferenced
argument.

Before calling IoCreateDevice we must create a UNICODE_STRING to hold the internal device name:

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Booster");

// alternatively,

// RtlInitUnicodeString(&devName, L"\\Device\\Booster");

The device name could be anything but should be in the \Device object manager directory. There are two
ways to initialize a UNICODE_STRING with a constant string. The first is using RtlInitUnicodeString,
which works just fine. But RtlInitUnicodeString must count the number of characters in the string to
initialize the Length and MaximumLength appropriately. Not a big deal in this case, but there is a quicker
way - using the RTL_CONSTANT_STRING macro, which calculates the length of the string statically (at
compile time), meaning it can only work correctly with literal strings.

Now we are ready to call the IoCreateDevice function:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 63

PDEVICE_OBJECT DeviceObject;

NTSTATUS status = IoCreateDevice(

DriverObject, // our driver object

0, // no need for extra bytes

&devName, // the device name

FILE_DEVICE_UNKNOWN, // device type

0, // characteristics flags

FALSE, // not exclusive

&DeviceObject); // the resulting pointer

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to create device object (0x%08X)\n", status));

return status;

}

If all goes well, we now have a pointer to our device object. The next step is to make this device object
accessible to user-mode callers by providing a symbolic link. Creating a symbolic link involves calling
IoCreateSymbolicLink:

NTSTATUS IoCreateSymbolicLink(

In PUNICODE_STRING SymbolicLinkName,

In PUNICODE_STRING DeviceName);

The following lines create a symbolic link and connect it to our device object:

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to create symbolic link (0x%08X)\n", status));

IoDeleteDevice(DeviceObject); // important!

return status;

}

The IoCreateSymbolicLink does the work by accepting the symbolic link and the target of the link. Note
that if the creation fails, we must undo everything done so far - in this case just the fact the device object
was created - by calling IoDeleteDevice. More generally, if DriverEntry returns any failure status, the
Unload routine is not called. If we had more initialization steps to do, we would have to remember to undo
everything until that point in case of failure. We’ll see a more elegant way of handling this in chapter 6.

Once we have the symbolic link and the device object set up, DriverEntry can return success, indicating
the driver is now ready to accept requests.

Before we move on, we must not forget the Unload routine. Assuming DriverEntry completed success-
fully, the Unload routine must undo whatever was done in DriverEntry. In our case, there are two things
to undo: device object creation and symbolic link creation. We’ll undo them in reverse order:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 64

void BoosterUnload(_In_ PDRIVER_OBJECT DriverObject) {

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");

// delete symbolic link

IoDeleteSymbolicLink(&symLink);

// delete device object

IoDeleteDevice(DriverObject->DeviceObject);

}

Notice the device object pointer is extracted from the driver object, as it’s the only argument we get in the
Unload routine. It’s certainly possible to store the device object pointer in a global variable and access it
here directly, but there is no need. Global variables usage should be kept to a minimum.

Client Code

At this point, it’s worth writing the user-mode client code. Everything we need for the client has already
been defined.

Add a new C++ Console Application project to the solution named Boost (or some other name of your
choosing). The Visual Studio wizard should create a single source file with some “hello world” type of
code. You can safely delete all the contents of the file.

First, we add the required #includes to the Boost.cpp file:

#include <windows.h>

#include <stdio.h>

#include "..\Booster\BoosterCommon.h"

Note that we include the common header file created by the driver to be shared with the client.

Change the main function to accept command line arguments. We’ll accept a thread ID and a priority
using command line arguments and request the driver to change the priority of the thread to the given
value.

int main(int argc, const char* argv[]) {

if (argc < 3) {

printf("Usage: Boost <threadid> <priority>\n");

return 0;

}

//

// extract from command line

//

int tid = atoi(argv[1]);

int priority = atoi(argv[2]);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 65

Next, we need to open a handle to our device. The “file name” to CreateFile should be the symbolic link
prepended with “\\.\”. The entire call should look like this:

HANDLE hDevice = CreateFile(L"\\\\.\\Booster", GENERIC_WRITE,

0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)

return Error("Failed to open device");

The Error function simply prints some text with the last Windows API error:

int Error(const char* message) {

printf("%s (error=%u)\n", message, GetLastError());

return 1;

}

The CreateFile call should reach the driver in its IRP_MJ_CREATE dispatch routine. If the driver is not
loaded at this time - meaning there is no device object and no symbolic link - we’ll get error number 2
(file not found).
Now that we have a valid handle to our device, it’s time to set up the call to Write. First, we need to create
a ThreadData structure and fill in the details:

ThreadData data;

data.ThreadId = tid;

data.Priority = priority;

Now we’re ready to call WriteFile and close the device handle afterwards:

DWORD returned;

BOOL success = WriteFile(hDevice,

&data, sizeof(data), // buffer and length

&returned, nullptr);

if (!success)

return Error("Priority change failed!");

printf("Priority change succeeded!\n");

CloseHandle(hDevice);

The call to WriteFile reaches the driver by invoking the IRP_MJ_WRITE major function routine.

At this point, the client code is complete. All that remains is to implement the dispatch routines we declared
on the driver side.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 66

The Create and Close Dispatch Routines

Now we’re ready to implement the three dispatch routines defined by the driver. The simplest by far are
the Create and Close routines. All that’s needed is completing the request with a successful status. Here
is the complete Create/Close dispatch routine implementation:

NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

UNREFERENCED_PARAMETER(DeviceObject);

Irp->IoStatus.Status = STATUS_SUCCESS;

Irp->IoStatus.Information = 0;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return STATUS_SUCCESS;

}

Every dispatch routine accepts the target device object and an I/O Request Packet (IRP). We don’t care
much about the device object, since we only have one, so it must be the one we created in DriverEntry.
The IRP on the other hand, is extremely important. We’ll dig deeper into IRPs in chapter 6, but we need
to take a quick look at IRPs now.

An IRP is a semi-documented structure that represents a request, typically coming from one of the man-
agers in the Executive: the I/O Manager, the Plug & Play Manager, or the Power Manager. With a simple
software driver, that wouldmost likely be the I/OManager. Regardless of the creator of the IRP, the driver’s
purpose is to handle the IRP, which means looking at the details of the request and doing what needs to
be done to complete it.

Every request to the driver always arrives wrapped in an IRP, whether that’s a Create, Close, Read, Write,
or any other IRP. By looking at the IRP’s members, we can figure out the type and details of the request
(technically, the dispatch routine itself was pointed to based on the request type, so in most cases you
already know the request type). It’s worth mentioning that an IRP never arrives alone; it’s accompanied
by one or more structures of type IO_STACK_LOCATION. In simple cases like our driver, there is a single
IO_STACK_LOCATION. In more complex cases where there are filter drivers above or below us, multiple IO_-
STACK_LOCATION instances exist, one for each layer in the device stack. (We’ll discuss this more thoroughly
in chapter 7). Simply put, some of the information we need is in the base IRP structure, and some is in the
IO_STACK_LOCATION for our “layer” in the device stack.

In the case of Create and Close, we don’t need to look into anymembers.We just need to set the completion
status of the IRP in its IoStatus member (of type IO_STATUS_BLOCK), which has two members:

• Status (NTSTATUS) - indicating the status this request should complete with.
• Information (ULONG_PTR) - a polymorphic member, meaning different things in different request
types. In the case of Create and Close, a zero value is just fine.

To complete the IRP, we call IoCompleteRequest. This function has a lot to do, but basically it propagates
the IRP back to its creator (typically the I/O Manager), and that manager notifies the client that the
operation has completed and frees the IRP. The second argument is a temporary priority boost value that a

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 67

driver can provide to its client. In most cases for a software driver, a value of zero is fine (IO_NO_INCREMENT
is defined as zero). This is especially true since the request is completed synchronously, so no reason the
caller should get a priority boost. More information on this function is provided in chapter 7.

The last thing to do is return the same status as the one put into the IRP. This may seem like a useless
duplication, but it is necessary (the reason will be clearer in a later chapter).

You may be tempted to write the last line of BoosterCreateClose like so:

return Irp->IoStatus.Status; So that the returned value is always the same as the one
stored in the IRP. This code is buggy, however, and will cause a BSOD in most cases. The reason
is that after IoCompleteRequest is invoked, the IRP pointer should be considered “poison”, as
it’s more likely than not that it has already been deallocated by the I/O manager.

The Write Dispatch Routine

This is the crux of the matter. All the driver code so far has led to this dispatch routine. This is the one
doing the actual work of setting a given thread to a requested priority.

The first thing we need to do is check for errors in the supplied data. In our case, we expect a structure of
type ThreadData. The first thing is to do is retrieve the current IRP stack location, because the size of the
buffer happens to be stored there:

NTSTATUS BoosterWrite(PDEVICE_OBJECT, PIRP Irp) {

auto status = STATUS_SUCCESS;

ULONG_PTR information = 0; // track used bytes

// irpSp is of type PIO_STACK_LOCATION

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

The key to getting the information for any IRP is to look inside the IO_STACK_LOCATION associated with
the current device layer. Calling IoGetCurrentIrpStackLocation returns a pointer to the correct IO_-
STACK_LOCATION. In our case, there is just one IO_STACK_LOCATION, but in the general case there could be
more (in fact, a filter may be above our device), so calling IoGetCurrentIrpStackLocation is the right
thing to do.

The main ingredient in an IO_STACK_LOCATION is a monstrous union identified with the member named
Parameters, which holds a set of structures, one for each type of IRP. In the case of IRP_MJ_WRITE, the
structure to look at is Parameters.Write.

Now we can check the buffer size to make sure it’s at least the size we expect:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 68

do {

if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

The do keyword opens a simple do/while(false) block that allows using the break keyword to bail out
early in case of an error. We’ll discuss this technique in greater detail in chapter 7.

Next, we need to grab the user buffer’s pointer, and check if the priority value is in the legal range (0 to 31).
We also check if the pointer itself is NULL, as it’s possible for the client to pass a NULL pointer for the buffer,
but the length may be greater than zero. The buffer’s address is provided in the UserBuffer member of
the IRP:

auto data = static_cast<ThreadData*>(Irp->UserBuffer);

if (data == nullptr || data->Priority < 1 || data->Priority > 31) {

status = STATUS_INVALID_PARAMETER;

break;

}

UserBuffer is typed as a void pointer, so we need to cast it to the expected type. Then we check the
priority value, and if not in range change the status to STATUS_INVALID_PARAMETER and break out of the
“loop”.

Notice the order of checks: the pointer is compared to NULL first, and only if non-NULL, the
next check takes place. If data is NULL, however, no further checks are made. This behavior is
guaranteed by the C/C++ standard, known as short circuit evaluation.

The use of static_cast asks the compiler to check if the cast makes sense. Technically, the
C++ compiler allows casting a void pointer to any other pointer, so it doesn’t look that useful
in this case, and perhaps a C-style cast would be simpler to write. Still, it’s a good habit to have,
as it can catch some errors at compile time (rather than nasty bugs at runtime).

We’re getting closer to our goal. The API we would like to use is KeSetPriorityThread, prototyped as
follows:

KPRIORITY KeSetPriorityThread(

Inout PKTHREAD Thread,

In KPRIORITY Priority);

The KPRIORITY type is just an 8-bit integer. The thread itself is identified by a pointer to a KTHREAD object.
KTHREAD is one part of the way the kernel manages threads. It’s completely undocumented, but we need
the pointer value anyway. We have the thread ID from the client, and need to somehow get a hold of a
pointer to the real thread object in kernel space. The function that can look up a thread by its ID is aptly
named PsLookupThreadByThreadId. To get its definition, we need to add another #include:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 69

#include <ntifs.h>

You must add this #include before <ntddk.h>, otherwise you’ll get compilation errors. In fact,
you can remove <ntddk.h> entirely, as it’s included by <ntifs.h>.

Here is the definition for PsLookupThreadByThreadId:

NTSTATUS PsLookupThreadByThreadId(

In HANDLE ThreadId,

Outptr PETHREAD *Thread);

Again, we see that a thread ID is required, but its type is HANDLE - but it is the ID that we need nonetheless.
The resulting pointer is typed as PETHREAD or pointer to ETHREAD. ETHREAD is completely opaque. Regard-
less, we seem to have a problem since KeSetPriorityThread accepts a PKTHREAD rather than PETHREAD.
It turns out these are the same, because the first member of an ETHREAD is a KTHREAD (the member is named
Tcb). We’ll prove all this in the next chapter when we use the kernel debugger. Here is the beginning of
the definition of ETHREAD:

typedef struct _ETHREAD {

KTHREAD Tcb;

// more members

} ETHREAD;

The bottom line is we can safely switch PKTHREAD for PETHREAD or vice versa when needed without a
hitch.
Now we can turn our thread ID into a pointer:

PETHREAD thread;

status = PsLookupThreadByThreadId(ULongToHandle(data->ThreadId),

&thread);

if (!NT_SUCCESS(status))

break;

The call to PsLookupThreadByThreadId can fail, the main reason being that the thread ID does not
reference any thread in the system. If the call fails, we simply break and let the resulting NTSTATUS
propagate out of the “loop”.

We are finally ready to change the thread’s priority. But wait - what if after the last call succeeds, the
thread is terminated, just before we set its new priority? Rest assured, this cannot happen. Technically,
the thread can terminate (from an execution perspective) at that point, but that will not make our pointer
a dangling one. This is because the lookup function, if successful, increments the reference count on the
kernel thread object, so it cannot die until we explicitly decrement the reference count. Here is the call to
make the priority change:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 70

auto oldPriority = KeSetPriorityThread(thread, data->Priority);

KdPrint(("Priority change for thread %u from %d to %d succeeded!\n",

data->ThreadId, oldPriority, data->Priority));

We get back the old priority, which we output with KdPrint for debugging purposes. All that’s left to do
now is decrement the thread object’s reference; otherwise, we have a leak on our hands (the thread object
will never die), which will only be resolved in the next system boot. The function that accomplishes this
feat is ObDereferenceObject:

ObDereferenceObject(thread);

We should also report to the client that we used the buffer provided. This is where the information
variable is used:

information = sizeof(data);

We’ll write that value to the IRP before completing it. This is the value returned as the second to last
argument from the client’s WritewFile call. All that’s left to do is to close the while “loop” and complete
the IRP with whatever status we happen to have at this time.

// end the while "loop"

} while (false);

//

// complete the IRP with the status we got at this point

//

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = information;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

And we’re done! For reference, here is the complete IRP_MJ_WRITE handler:

NTSTATUS BoosterWrite(PDEVICE_OBJECT, PIRP Irp) {

auto status = STATUS_SUCCESS;

ULONG_PTR information = 0;

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

do {

if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 71

}

auto data = static_cast<ThreadData*>(Irp->UserBuffer);

if (data == nullptr

|| data->Priority < 1 || data->Priority > 31) {

status = STATUS_INVALID_PARAMETER;

break;

}

PETHREAD thread;

status = PsLookupThreadByThreadId(

ULongToHandle(data->ThreadId), &thread);

if (!NT_SUCCESS(status)) {

break;

}

auto oldPriority = KeSetPriorityThread(thread, data->Priority);

KdPrint(("Priority change for thread %u from %d to %d succeeded!\n",

data->ThreadId, oldPriority, data->Priority));

ObDereferenceObject(thread);

information = sizeof(data);

} while (false);

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = information;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

Installing and Testing

At this point, we can build the driver and client successfully. Our next step is to install the driver and test
its functionality. You can try the following on a virtual machine, or if you’re feeling brave enough - on
your development machine.

First, let’s install the driver. Copy the resulting booster.sys file to the target machine (if it’s not your
development machine). On the target machine, open an elevated command window and install the driver
using the sc.exe tool as we did back in chapter 2:

c:\> sc create booster type= kernel binPath= c:\Test\Booster.sys

Make sure binPath includes the full path of the resulting SYS file. The name of the driver (booster) in the
example is the name of the created Registry key, and so must be unique. It doesn’t have to be related to
the SYS file name.

Now we can load the driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 72

c:\> sc start booster

If all is well, the driver would have started successfully. To make sure, we can openWinObj and look for
our device name and symbolic link. Figure 4-1 shows the symbolic link inWinObj.

Figure 4-1: Symbolic Link inWinObj

Now we can finally run the client executable. Figure 4-2 shows a thread in Process Explorer of a cmd.exe
process selected as an example for which we want set priority to a new value.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 73

Figure 4-2: Original thread priority

Run the client with the thread ID and the desired priority (replace the thread ID as needed):

c:\Test> boost 768 25

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 74

If you get an error trying to run the executable (usually it’s a Debug build), you may need to set
the runtime library to a static one instead of a DLL. Go to Project properties in Visual Studio for
the client application, C++ node, Code Generation, Runtime Library, and selectMultithreaded
Debug. Alternatively, you can compile the client in Release build, and that should run without
any changes.

And voila! See figure 4-3.

You should also run DbgView and see the output when a successful priority change occurrs.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 4: Driver from Start to Finish 75

Figure 4-3: Modified thread priority

Summary

We’ve seen how to build a simple, yet complete, driver, from start to finish. We created a user-mode client
to communicate with the driver. In the next chapter, we’ll tackle debugging, which is something we’re
bound to do when writing drivers that may not behave as we expect.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing
Just like with any software, kernel drivers tend to have bugs. Debugging drivers, as opposed to user-mode
debugging, is more challenging. Driver debugging is essentially debugging an entire machine, not just a
specific process. This requires a somewhat different mindset. This chapter discusses user-mode and kernel-
mode debugging using theWinDbg debugger.

In this chapter:

• Debugging Tools for Windows
• Introduction toWinDbg
• Kernel Debugging
• Full Kernel Debugging
• Kernel Driver Debugging Tutorial
• Asserts and Tracing

Debugging Tools for Windows

The Debugging Tools for Windows package contains a set of debuggers, tools, and documentation focusing
on the debuggers within the package. This package can be installed as part of the Windows SDK or the
WDK, but there is no real “installation” done. The installation just copies files but does not touch the
Registry, meaning the package depends only on its own modules and the Windows built-in DLLs. This
makes it easy to copy the entire directory to any other directory including removable media.

The package contains four debuggers: Cdb.exe, Ntsd.Exe, Kd.exe, and WinDbg.exe. Here is a rundown of
the basic functionality of each debugger:

• Cdb andNtsd are user-mode, console-based debuggers. Thismeans they can be attached to processes,
just like any other user-mode debugger. Both have console UI - type in a command, get a response,
and repeat. The only difference between the two is that if launched from a console window,Cdb uses
the same console, whereas Ntsd always opens a new console window. They are otherwise identical.

• Kd is a kernel debugger with a console user interface. It can attach to the local kernel (Local
Kernel Debugging, described in the next section), or to another machine for a full kernel debugging
experience.

• WinDbg is the only debugger with a graphical user interface. It can be used for user-mode debugging
or kernel debugging, depending on the selection performed with its menus or the command line
arguments passed to it when launched.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 77

A relatively recent alternative to the classicWinDbg isWindbg Preview, available through the Microsoft
store. This is a remake of the classic debugger with a much better user interface. It can be installed on
Windows 10 version 1607 or later. From a functionality standpoint, it’s similar to the classicWinDbg. But
it is somewhat easier to use because of the modern, convenient UI, and in fact has also solved some bugs
that still plague the classic debugger. All the commands we’ll see in this chapter work equally well with
either debugger.

Although these debuggers may seem different from one another, the user-mode debuggers are essentially
the same, as are the kernel debuggers. They are all based around a single debugger engine implemented
as a DLL (DbgEng.Dll). The various debuggers are able to use extension DLLs, that provide most of the
power of the debuggers by loading new commands.

TheDebugger Engine is documented to a large extent in theDebugging tools forWindows documentation,
which makes it possible to write new debuggers (or other tools) that utilize the debugger engine.

Other tools that are part of the package include the following (partial list):

• Gflags.exe - the Global Flags tool that allows setting some kernel flags and image flags.
• ADPlus.exe - generate a dump file for a process crash or hang.
• Kill.exe - a simple tool to terminate process(es) based on process ID, name, or pattern.
• Dumpchk.exe - tool to do some general checking of dump files.
• TList.exe - lists running processes on the system with various options.
• Umdh.exe - analyzes heap allocations in user-mode processes.
• UsbView.exe - displays a hierarchical view of USB devices and hubs.

Introduction toWinDbg

This section describes the fundamentals of WinDbg, but bear in mind everything is essentially the same
for the console debuggers, with the exception of the GUI windows.

WinDbg is built around commands. The user enters a command, and the debugger responds with text
describing the results of the command. With the GUI, some of these results are depicted in dedicated
windows, such as locals, stack, threads, etc.

WinDbg supports three types of commands:

• Intrinsic commands - these commands are built-in into the debugger (part of the debugger engine),
and they operate on the target being debugged.

• Meta commands - these commands start with a period (.) and they operate on the debugging
environment, rather than directly on the target being debugged.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 78

• Extension commands (sometimes called bang commands) - these commands start with an excla-
mation point (!), providing much of the power of the debugger. All extension commands are im-
plemented in external DLLs. By default, the debugger loads a set of predefined extension DLLs,
but more can be loaded from the debugger directory or another directory with the .load meta
command.

Writing extensionDLLs is possible and is fully documented in the debugger docs. In fact, many suchDLLs
have been created and can be loaded from their respective source. These DLLs provide new commands
that enhance the debugging experience, often targeting specific scenarios.

Tutorial: User mode debugging basics

If you have experience withWinDbg usage in user-mode, you can safely skip this section.

This tutorial is aimed at getting a basic understanding of WinDbg and how to use it for user-mode
debugging. Kernel debugging is described in the next section.

There are generally two ways to initiate user-mode debugging - either launch an executable and attach to
it, or attach to an already existing process. We’ll use the latter approach in this tutorial, but except for this
first step, all other operations are identical.

• Launch Notepad.
• LaunchWinDbg (either the Preview or the classic one. The following screenshots use the Preview).
• Select File / Attach To Process and locate the Notepad process in the list (see figure 5-1). Then click
Attach. You should see output similar to figure 5-2.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 79

Figure 5-1: Attaching to a process with WinDbg

Figure 5-2: First view after process attach

The Command window is the main window of interest - it should always be open. This is the one showing
the various responses of commands. Typically, most of the time in a debugging session is spent interacting

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 80

with this window.

The process is suspended - we are in a breakpoint induced by the debugger.

• The first command we’ll use is ∼, which shows information about all threads in the debugged
process:

0:003> ~

0 Id: 874c.18068 Suspend: 1 Teb: 00000001`2229d000 Unfrozen

1 Id: 874c.46ac Suspend: 1 Teb: 00000001`222a5000 Unfrozen

2 Id: 874c.152cc Suspend: 1 Teb: 00000001`222a7000 Unfrozen

. 3 Id: 874c.bb08 Suspend: 1 Teb: 00000001`222ab000 Unfrozen

The exact number of threads you’ll see may be different than shown here.

One thing that is very important is the existence of proper symbols. Microsoft provides a public symbol
server, which allows locating symbols for most modules by produced by Microsoft. This is essential in any
low-level debugging.

• To set symbols quickly, enter the .symfix command.
• A better approach is to set up symbols once and have them available for all future debugging sessions.
To do that, add a system environment variable named _NT_SYMBOL_PATH and set it to a string
like the following:

SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols

The middle part (between asterisks) is a local path for caching symbols on your local machine; you
can select any path you like (including a network share, if sharing with a team is desired). Once this
environment variable is set, next invocations of the debugger will find symbols automatically and load
them from the Microsoft symbol server as needed.

The debuggers in the Debugging Tools for Windows are not the only tools that look for this
environment variables. Sysinternals tools (e.g. Process Explorer, Process Monitor), Visual Studio,
and others look for the same variable as well. You set it once, and get its benefit using multiple
tools.

• To make sure you have proper symbols, enter the lm (loaded modules) command:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 81

0:003> lm

start end module name

00007ff7`53820000 00007ff7`53863000 notepad (deferred)

00007ffb`afbe0000 00007ffb`afca6000 efswrt (deferred)

...

00007ffc`1db00000 00007ffc`1dba8000 shcore (deferred)

00007ffc`1dbb0000 00007ffc`1dc74000 OLEAUT32 (deferred)

00007ffc`1dc80000 00007ffc`1dd22000 clbcatq (deferred)

00007ffc`1dd30000 00007ffc`1de57000 COMDLG32 (deferred)

00007ffc`1de60000 00007ffc`1f350000 SHELL32 (deferred)

00007ffc`1f500000 00007ffc`1f622000 RPCRT4 (deferred)

00007ffc`1f630000 00007ffc`1f6e3000 KERNEL32 (pdb symbols) c:\symbols\ker\

nel32.pdb\3B92DED9912D874A2BD08735BC0199A31\kernel32.pdb

00007ffc`1f700000 00007ffc`1f729000 GDI32 (deferred)

00007ffc`1f790000 00007ffc`1f7e2000 SHLWAPI (deferred)

00007ffc`1f8d0000 00007ffc`1f96e000 sechost (deferred)

00007ffc`1f970000 00007ffc`1fc9c000 combase (deferred)

00007ffc`1fca0000 00007ffc`1fd3e000 msvcrt (deferred)

00007ffc`1fe50000 00007ffc`1fef3000 ADVAPI32 (deferred)

00007ffc`20380000 00007ffc`203ae000 IMM32 (deferred)

00007ffc`203e0000 00007ffc`205cd000 ntdll (pdb symbols) c:\symbols\ntd\

ll.pdb\E7EEB80BFAA91532B88FF026DC6B9F341\ntdll.pdb

The list of modules shows all modules (DLLs and the EXE) loaded into the debugged process at this time.
You can see the start and end virtual addresses into which each module is loaded. Following the module
name you can see the symbol status of this module (in parenthesis). Possible values include:

• deferred - the symbols for this module were not needed in this debugging session so far, and so
are not loaded at this time. The symbols will be loaded when needed (for example, if a call stack
contains a function from that module). This is the default value.

• pdb symbols - proper public symbols have been loaded. The local path of the PDB file is displayed.
• private pdb symbols - private symbols are available. This would be the case for your own modules,
compiled with Visual Studio. For Microsoft modules, this is very rare (at the time of writing, com-
base.dll is provided with private symbols). With private symbols, you have information about local
variables and private types.

• export symbols - only exported symbols are available for this DLL. This typically means there are
no symbols for this module, but the debugger is able to use the exported sysmbols. It’s better than
no symbols at all, but could be confusing, as the debugger will use the closest export it can find, but
the real function is most likely different.

• no symbols - this module’s symbols were attempted to be located, but nothing was found, not even
exported symbols (such modules don’t have exported symbols, as is the case of an executable or
driver files).

You can force loading of a module’s symbols using the following command:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 82

.reload /f modulename.dll

This will provide definitive evidence to the availability of symbols for this module.

Symbol paths can also be configured in the debugger’s settings dialog.

Open the File / Settings menu and locate Debugging Settings. You can then add more paths for symbol
searching. This is useful if debugging your own code, so you would like the debugger to search your
directories where relevant PDB files may be found (see figure 5-3).

Figure 5-3: Symbols and source paths configuration

Make sure you have symbols configured correctly before you proceed. To diagnose any issues, you can
enter the !sym noisy command that logs detailed information for symbol load attempts.

Back to the thread list - notice that one of the threads has a dot in front of its data. This is the current
thread as far as the debugger is concerned. This means that any command issued that involves a thread,
where the thread is not explicitly specified, will work on that thread. This “current thread” is also shown
in the prompt - the number to the right of the colon is the current thread index (3 in this example).

Enter the k command, that shows the stack trace for the current thread:

0:003> k

Child-SP RetAddr Call Site

00 00000001`224ffbd8 00007ffc`204aef5b ntdll!DbgBreakPoint

01 00000001`224ffbe0 00007ffc`1f647974 ntdll!DbgUiRemoteBreakin+0x4b

02 00000001`224ffc10 00007ffc`2044a271 KERNEL32!BaseThreadInitThunk+0x14

03 00000001`224ffc40 00000000`00000000 ntdll!RtlUserThreadStart+0x21

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 83

How can you tell that you don’t have proper symbols except using the lm command? If you see
very large offsets from the beginning of a function, this is probably not the real function name
- it’s just the closest one the debugger knows about. “Large offsets” is obviously a relative term,
but a good rule of thumb is that a 4-hex digit offset is almost always wrong.

You can see the list of calls made on this thread (user-mode only, of course). The top of the call stack in
the above output is the function DbgBreakPoint located in the module ntdll.dll. The general format of
addresses with symbols is modulename!functionname+offset. The offset is optional and could be zero
if it’s exactly the start of this function. Also notice the module name is without an extension.

In the output above, DbgBreakpoint was called by DbgUiRemoteBreakIn, which was called by
BaseThreadInitThunk, and so on.

This thread, by the way, was injected by the debugger in order to break into the target forcefully.

To switch to a different thread, use the following command:∼nswhere n is the thread index. Let’s switch
to thread 0 and then display its call stack:

0:003> ~0s

win32u!NtUserGetMessage+0x14:

00007ffc`1c4b1164 c3 ret

0:000> k

Child-SP RetAddr Call Site

00 00000001`2247f998 00007ffc`1d802fbd win32u!NtUserGetMessage+0x14

01 00000001`2247f9a0 00007ff7`5382449f USER32!GetMessageW+0x2d

02 00000001`2247fa00 00007ff7`5383ae07 notepad!WinMain+0x267

03 00000001`2247fb00 00007ffc`1f647974 notepad!__mainCRTStartup+0x19f

04 00000001`2247fbc0 00007ffc`2044a271 KERNEL32!BaseThreadInitThunk+0x14

05 00000001`2247fbf0 00000000`00000000 ntdll!RtlUserThreadStart+0x21

This is Notepad’s main (first) thread. The top of the stack shows the thread waiting for UI messages
(win32u!NtUserGetMessage). The thread is actually waiting in kernel mode, but this is invisible from a
user-mode debugger’s view.

An alternative way to show the call stack of another thread without switching to it, is to use the tilde and
thread number before the actual command. The following output is for thread 1’s stack:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 84

0:000> ~1k

Child-SP RetAddr Call Site

00 00000001`2267f4c8 00007ffc`204301f4 ntdll!NtWaitForWorkViaWorkerFactory+0x14

01 00000001`2267f4d0 00007ffc`1f647974 ntdll!TppWorkerThread+0x274

02 00000001`2267f7c0 00007ffc`2044a271 KERNEL32!BaseThreadInitThunk+0x14

03 00000001`2267f7f0 00000000`00000000 ntdll!RtlUserThreadStart+0x21

The above call stack is very common, and indicates a thread that is part of the thread pool.
TppWorkerThread is the thread entry point for thread pool threads (Tpp is short for “Thread
Pool Private”).

Let’s go back to the list of threads:

. 0 Id: 874c.18068 Suspend: 1 Teb: 00000001`2229d000 Unfrozen

1 Id: 874c.46ac Suspend: 1 Teb: 00000001`222a5000 Unfrozen

2 Id: 874c.152cc Suspend: 1 Teb: 00000001`222a7000 Unfrozen

3 Id: 874c.bb08 Suspend: 1 Teb: 00000001`222ab000 Unfrozen

Notice the dot has moved to thread 0 (current thread), revealing a hash sign (#) on thread 3. The thread
markedwith a hash (#) is the one that caused the last breakpoint (which in this casewas our initial debugger
attach).

The basic information for a thread provided by the ∼ command is shown in figure 5-4.

Figure 5-4: Thread information for the∼ command

Most numbers reported by WinDbg are hexadecimal by default. To convert a value to decimal, you can
use the ? (evaluate expression) command.

Type the following to get the decimal process ID (you can then compare to the reported PID in Task
Manager):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 85

0:000> ? 874c

Evaluate expression: 34636 = 00000000`0000874c

You can express decimal numbers with the 0n prefix, so you can get the inverse result as well:

0:000> ? 0n34636

Evaluate expression: 34636 = 00000000`0000874c

The 0y prefix can be used in WinDbg to specify binary values. For example, using 0y1100 is
the same as 0n12 as is 0xc. You can use the ? command to see the converted values.

You can examine the TEB of a thread by using the !teb command. Using !teb without an address shows
the TEB of the current thread:

0:000> !teb

TEB at 000000012229d000

ExceptionList: 0000000000000000

StackBase: 0000000122480000

StackLimit: 000000012246f000

SubSystemTib: 0000000000000000

FiberData: 0000000000001e00

ArbitraryUserPointer: 0000000000000000

Self: 000000012229d000

EnvironmentPointer: 0000000000000000

ClientId: 000000000000874c . 0000000000018068

RpcHandle: 0000000000000000

Tls Storage: 000001c93676c940

PEB Address: 000000012229c000

LastErrorValue: 0

LastStatusValue: 8000001a

Count Owned Locks: 0

HardErrorMode: 0

0:000> !teb 00000001`222a5000

TEB at 00000001222a5000

ExceptionList: 0000000000000000

StackBase: 0000000122680000

StackLimit: 000000012266f000

SubSystemTib: 0000000000000000

FiberData: 0000000000001e00

ArbitraryUserPointer: 0000000000000000

Self: 00000001222a5000

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 86

EnvironmentPointer: 0000000000000000

ClientId: 000000000000874c . 00000000000046ac

RpcHandle: 0000000000000000

Tls Storage: 000001c936764260

PEB Address: 000000012229c000

LastErrorValue: 0

LastStatusValue: c0000034

Count Owned Locks: 0

HardErrorMode: 0

Some data shown by the !teb command is relatively known or easy to guess:

• StackBase and StackLimit - user-mode current stack base and stack limit for the thread.
• ClientId - process and thread IDs.
• LastErrorValue - last Win32 error code (GetLastError).
• TlsStorage - Thread Local Storage (TLS) array for this thread (full explanation of TLS is beyond the
scope of this book).

• PEB Address - address of the Process Environment Block (PEB), viewable with the !peb command.
• LastStatusValue - last NTSTATUS value returned from a system call.

• The !teb command (and similar commands) shows parts of the real data structure behind the scenes,
in this case _TEB. You can always look at the real structure using the dt (display type) command:

0:000> dt ntdll!_teb

+0x000 NtTib : _NT_TIB

+0x038 EnvironmentPointer : Ptr64 Void

+0x040 ClientId : _CLIENT_ID

+0x050 ActiveRpcHandle : Ptr64 Void

+0x058 ThreadLocalStoragePointer : Ptr64 Void

+0x060 ProcessEnvironmentBlock : Ptr64 _PEB

...

+0x1808 LockCount : Uint4B

+0x180c WowTebOffset : Int4B

+0x1810 ResourceRetValue : Ptr64 Void

+0x1818 ReservedForWdf : Ptr64 Void

+0x1820 ReservedForCrt : Uint8B

+0x1828 EffectiveContainerId : _GUID

Notice thatWinDbg is not case sensitive when it comes to symbols. Also, notice the structure name starting
with an underscore; this the way most structures are defined in Windows (user-mode and kernel-mode).
Using the typedef name (without the underscore) may or may not work, so always using the underscore
is recommended.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 87

How do you know which module defines a structure you wish to view? If the structure
is documented, the module would be listed in the docs for the structure. You can also try
specifying the structure without the module name, forcing the debugger to search for it.
Generally, you “know” where the structure is defined with experience and sometimes context.

If you attach an address to the previous command, you can get the actual values of data members:

0:000> dt ntdll!_teb 00000001`2229d000

+0x000 NtTib : _NT_TIB

+0x038 EnvironmentPointer : (null)

+0x040 ClientId : _CLIENT_ID

+0x050 ActiveRpcHandle : (null)

+0x058 ThreadLocalStoragePointer : 0x000001c9`3676c940 Void

+0x060 ProcessEnvironmentBlock : 0x00000001`2229c000 _PEB

+0x068 LastErrorValue : 0

...

+0x1808 LockCount : 0

+0x180c WowTebOffset : 0n0

+0x1810 ResourceRetValue : 0x000001c9`3677fd00 Void

+0x1818 ReservedForWdf : (null)

+0x1820 ReservedForCrt : 0

+0x1828 EffectiveContainerId : _GUID {00000000-0000-0000-0000-000000000000}

Each member is shown with its offset from the beginning of the structure, its name, and its value. Simple
values are shown directly, while structure values (such as NtTib above) are shown with a hyperlink.
Clicking this hyperlink provides the details of the structure.

Click on the NtTib member above to show the details of this data member:

0:000> dx -r1 (*((ntdll!_NT_TIB *)0x12229d000))

(*((ntdll!_NT_TIB *)0x12229d000)) [Type: _NT_TIB]

[+0x000] ExceptionList : 0x0 [Type: _EXCEPTION_REGISTRATION_RECORD *]

[+0x008] StackBase : 0x122480000 [Type: void *]

[+0x010] StackLimit : 0x12246f000 [Type: void *]

[+0x018] SubSystemTib : 0x0 [Type: void *]

[+0x020] FiberData : 0x1e00 [Type: void *]

[+0x020] Version : 0x1e00 [Type: unsigned long]

[+0x028] ArbitraryUserPointer : 0x0 [Type: void *]

[+0x030] Self : 0x12229d000 [Type: _NT_TIB *]

The debugger uses the newer dx command to view data. See the section “Advanced Debugging with
WinDbg” later in this chapter for more on the dx command.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 88

If you don’t see hyperlinks, you may be using a very old WinDbg, where Debugger Markup Language
(DML) is not on by default. You can turn it on with the .prefer_dml 1 command.

Now let’s turn our attention to breakpoints. Let’s set a breakpoint when a file is opened by notepad.

• Type the following command to set a breakpoint in the CreateFile API function:

0:000> bp kernel32!createfilew

Notice the function name is in fact CreateFileW, as there is no function called CreateFile. In code, this
is a macro that expands to CreateFileW (wide, Unicode version) or CreateFileA (ASCII or Ansi version)
based on a compilation constant named UNICODE.WinDbg responds with nothing. This is a good thing.

The reason there are two sets of functions formost APIswhere strings are involved is a historical
one. In any case, Visual Studio projects define the UNICODE constant by default, so Unicode is
the norm. This is a good thing - most of the A functions convert their input to Unicode and call
the W function.

You can list the existing breakpoints with the bl command:

0:000> bl

0 e Disable Clear 00007ffc`1f652300 0001 (0001) 0:**** KERNEL32!CreateFileW

You can see the breakpoint index (0), whether it’s enabled or disabled (e=enabled, d=disabled), and you
get DML hyperlinks to disable (bd command) and delete (bc command) the breakpoint.

Now let notepad continue execution, until the breakpoint hits:

Type the g command or press the Go button on the toolbar or hit F5:

You’ll see the debugger showing Busy in the prompt and the command area showsDebuggee is running,
meaning you cannot enter commands until the next break.

Notepad should now be alive. Go to its File menu and select Open…. The debugger should spew details of
module loads and then break:

Breakpoint 0 hit

KERNEL32!CreateFileW:

00007ffc`1f652300 ff25aa670500 jmp qword ptr [KERNEL32!_imp_CreateFileW \

(00007ffc`1f6a8ab0)] ds:00007ffc`1f6a8ab0={KERNELBASE!CreateFileW (00007ffc`1c7\

5e260)}

• We have hit the breakpoint! Notice the thread in which it occurred. Let’s see what the call stack
looks like (it may take a while to show if the debugger needs to download symbols fromMicrosoft’s
symbol server):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 89

0:002> k

Child-SP RetAddr Call Site

00 00000001`226fab08 00007ffc`061c8368 KERNEL32!CreateFileW

01 00000001`226fab10 00007ffc`061c5d4d mscoreei!RuntimeDesc::VerifyMainRuntimeM\

odule+0x2c

02 00000001`226fab60 00007ffc`061c6068 mscoreei!FindRuntimesInInstallRoot+0x2fb

03 00000001`226fb3e0 00007ffc`061cb748 mscoreei!GetOrCreateSxSProcessInfo+0x94

04 00000001`226fb460 00007ffc`061cb62b mscoreei!CLRMetaHostPolicyImpl::GetReque\

stedRuntimeHelper+0xfc

05 00000001`226fb740 00007ffc`061ed4e6 mscoreei!CLRMetaHostPolicyImpl::GetReque\

stedRuntime+0x120

...

21 00000001`226fede0 00007ffc`1df025b2 SHELL32!CFSIconOverlayManager::LoadNonlo\

adedOverlayIdentifiers+0xaa

22 00000001`226ff320 00007ffc`1df022af SHELL32!EnableExternalOverlayIdentifiers\

+0x46

23 00000001`226ff350 00007ffc`1def434e SHELL32!CFSIconOverlayManager::RefreshOv\

erlayImages+0xff

24 00000001`226ff390 00007ffc`1cf250a3 SHELL32!SHELL32_GetIconOverlayManager+0x\

6e

25 00000001`226ff3c0 00007ffc`1ceb2726 windows_storage!CFSFolder::_GetOverlayIn\

fo+0x12b

26 00000001`226ff470 00007ffc`1cf3108b windows_storage!CAutoDestItemsFolder::Ge\

tOverlayIndex+0xb6

27 00000001`226ff4f0 00007ffc`1cf30f87 windows_storage!CRegFolder::_GetOverlayI\

nfo+0xbf

28 00000001`226ff5c0 00007ffb`df8fc4d1 windows_storage!CRegFolder::GetOverlayIn\

dex+0x47

29 00000001`226ff5f0 00007ffb`df91f095 explorerframe!CNscOverlayTask::_Extract+\

0x51

2a 00000001`226ff640 00007ffb`df8f70c2 explorerframe!CNscOverlayTask::InternalR\

esumeRT+0x45

2b 00000001`226ff670 00007ffc`1cf7b58c explorerframe!CRunnableTask::Run+0xb2

2c 00000001`226ff6b0 00007ffc`1cf7b245 windows_storage!CShellTask::TT_Run+0x3c

2d 00000001`226ff6e0 00007ffc`1cf7b125 windows_storage!CShellTaskThread::Thread\

Proc+0xdd

2e 00000001`226ff790 00007ffc`1db32ac6 windows_storage!CShellTaskThread::s_Thre\

adProc+0x35

2f 00000001`226ff7c0 00007ffc`204521c5 shcore!ExecuteWorkItemThreadProc+0x16

30 00000001`226ff7f0 00007ffc`204305c4 ntdll!RtlpTpWorkCallback+0x165

31 00000001`226ff8d0 00007ffc`1f647974 ntdll!TppWorkerThread+0x644

32 00000001`226ffbc0 00007ffc`2044a271 KERNEL32!BaseThreadInitThunk+0x14

33 00000001`226ffbf0 00000000`00000000 ntdll!RtlUserThreadStart+0x21

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 90

Your call stack may be different, as it depends on the Windows version, and any extensions that may be
loaded and used by the open file dialog box.

What can we do at this point? You may wonder what file is being opened. We can get that information
based on the calling convention of the CreateFileW function. Since this is a 64-bit process (and the
processor is Intel/AMD), the calling convention states that the first integer/pointer arguments are passed
in the RCX, RDX, R8, and R9 registers (in this order). Since the file name in CreateFileW is the first
argument, the relevant register is RCX.

You can get more information on calling conventions in the Debugger documentation (or in several web
resources).

Display the value of the RCX register with the r command (you’ll get a different value):

0:002> r rcx

rcx=00000001226fabf8

We can view the memory pointed by RCX with various d (display) family of commands. Here is the db
command, interpreting the data as bytes.

0:002> db 00000001226fabf8

00000001`226fabf8 43 00 3a 00 5c 00 57 00-69 00 6e 00 64 00 6f 00 C.:.\.W.i.n\

.d.o.

00000001`226fac08 77 00 73 00 5c 00 4d 00-69 00 63 00 72 00 6f 00 w.s.\.M.i.c\

.r.o.

00000001`226fac18 73 00 6f 00 66 00 74 00-2e 00 4e 00 45 00 54 00 s.o.f.t...N\

.E.T.

00000001`226fac28 5c 00 46 00 72 00 61 00-6d 00 65 00 77 00 6f 00 \.F.r.a.m.e\

.w.o.

00000001`226fac38 72 00 6b 00 36 00 34 00-5c 00 5c 00 76 00 32 00 r.k.6.4.\.\\

.v.2.

00000001`226fac48 2e 00 30 00 2e 00 35 00-30 00 37 00 32 00 37 00 ..0...5.0.7\

.2.7.

00000001`226fac58 5c 00 63 00 6c 00 72 00-2e 00 64 00 6c 00 6c 00 \.c.l.r...d\

.l.l.

00000001`226fac68 00 00 76 1c fc 7f 00 00-00 00 00 00 00 00 00 00 ..v........\

.....

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 91

The db command shows the memory in bytes, and ASCII characters on the right. It’s pretty clear what the
file name is, but because the string is Unicode, it’s not very convenient to see.

Use the du command to view Unicode string more conveniently:

0:002> du 00000001226fabf8

00000001`226fabf8 "C:\Windows\Microsoft.NET\Framewo"

00000001`226fac38 "rk64\\v2.0.50727\clr.dll"

You can use a register value directly by prefixing its name with @:

0:002> du @rcx

00000001`226fabf8 "C:\Windows\Microsoft.NET\Framewo"

00000001`226fac38 "rk64\\v2.0.50727\clr.dll"

Similarly, you can view the value of the second argument by looking at the rdx register.

Now let’s set another breakpoint in the native API that is called by CreateFileW - NtCreateFile:

0:002> bp ntdll!ntcreatefile

0:002> bl

0 e Disable Clear 00007ffc`1f652300 0001 (0001) 0:**** KERNEL32!CreateFil\

eW

1 e Disable Clear 00007ffc`20480120 0001 (0001) 0:**** ntdll!NtCreateFile

Notice the native API never uses W or A - it always works with Unicode strings (in fact it expects
UNICODE_STRING structures, as we’ve seen already).

Continue execution with the g command. The debugger should break:

Breakpoint 1 hit

ntdll!NtCreateFile:

00007ffc`20480120 4c8bd1 mov r10,rcx

Check the call stack again:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 92

0:002> k

Child-SP RetAddr Call Site

00 00000001`226fa938 00007ffc`1c75e5d6 ntdll!NtCreateFile

01 00000001`226fa940 00007ffc`1c75e2c6 KERNELBASE!CreateFileInternal+0x2f6

02 00000001`226faab0 00007ffc`061c8368 KERNELBASE!CreateFileW+0x66

03 00000001`226fab10 00007ffc`061c5d4d mscoreei!RuntimeDesc::VerifyMainRuntimeM\

odule+0x2c

04 00000001`226fab60 00007ffc`061c6068 mscoreei!FindRuntimesInInstallRoot+0x2fb

05 00000001`226fb3e0 00007ffc`061cb748 mscoreei!GetOrCreateSxSProcessInfo+0x94

...

List the next 8 instructions that are about to be executed with the u (unassemble or disassemble) command:

0:002> u

ntdll!NtCreateFile:

00007ffc`20480120 4c8bd1 mov r10,rcx

00007ffc`20480123 b855000000 mov eax,55h

00007ffc`20480128 f604250803fe7f01 test byte ptr [SharedUserData+0x308 (0000\

0000`7ffe0308)],1

00007ffc`20480130 7503 jne ntdll!NtCreateFile+0x15 (00007ffc`204\

80135)

00007ffc`20480132 0f05 syscall

00007ffc`20480134 c3 ret

00007ffc`20480135 cd2e int 2Eh

00007ffc`20480137 c3 ret

Notice the value 0x55 is copied to the EAX register. This is the system service number for NtCreateFile,
as described in chapter 1. The syscall instruction shown is the one causing the transition to kernel-mode,
and then executing the NtCreateFile system service itself.

You can step over the next instruction with the p command (step - hit F10 as an alternative). You can step
into a function (in case of assembly, this is the call instruction) with the t command (trace - hit F11 as
an alternative):

0:002> p

Breakpoint 1 hit

ntdll!NtCreateFile:

00007ffc`20480120 4c8bd1 mov r10,rcx

0:002> p

ntdll!NtCreateFile+0x3:

00007ffc`20480123 b855000000 mov eax,55h

0:002> p

ntdll!NtCreateFile+0x8:

00007ffc`20480128 f604250803fe7f01 test byte ptr [SharedUserData+0x308 (0000\

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 93

0000`7ffe0308)],1 ds:00000000`7ffe0308=00

0:002> p

ntdll!NtCreateFile+0x10:

00007ffc`20480130 7503 jne ntdll!NtCreateFile+0x15 (00007ffc`204\

80135) [br=0]

0:002> p

ntdll!NtCreateFile+0x12:

00007ffc`20480132 0f05 syscall

Stepping inside a syscall is not possible, as we’re in user-mode. When we step over/into it, all is done
and we get back a result.

0:002> p

ntdll!NtCreateFile+0x14:

00007ffc`20480134 c3 ret

The return value of functions in x64 calling convention is stored in EAX or RAX. For system calls, it’s an
NTSTATUS, so EAX contains the returned status:

0:002> r eax

eax=c0000034

Zero means success, and a negative value (in two’s complement, most significant bit is set) means an error.
We can get a textual description of the error with the !error command:

0:002> !error @eax

Error code: (NTSTATUS) 0xc0000034 (3221225524) - Object Name not found.

This means the file wasn’t found on the system.

Disable all breakpoints and let Notepad continue execution normally:

0:002> bd *

0:002> g

Since we have no breakpoints at this time, we can force a break by clicking the Break button on the toolbar,
or hitting Ctrl+Break on the keyboard:

874c.16a54): Break instruction exception - code 80000003 (first chance)

ntdll!DbgBreakPoint:

00007ffc`20483080 cc int 3

Notice the thread number in the prompt. Show all current threads:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 94

0:022> ~

0 Id: 874c.18068 Suspend: 1 Teb: 00000001`2229d000 Unfrozen

1 Id: 874c.46ac Suspend: 1 Teb: 00000001`222a5000 Unfrozen

2 Id: 874c.152cc Suspend: 1 Teb: 00000001`222a7000 Unfrozen

3 Id: 874c.f7ec Suspend: 1 Teb: 00000001`222ad000 Unfrozen

4 Id: 874c.145b4 Suspend: 1 Teb: 00000001`222af000 Unfrozen

...

18 Id: 874c.f0c4 Suspend: 1 Teb: 00000001`222d1000 Unfrozen

19 Id: 874c.17414 Suspend: 1 Teb: 00000001`222d3000 Unfrozen

20 Id: 874c.c878 Suspend: 1 Teb: 00000001`222d5000 Unfrozen

21 Id: 874c.d8c0 Suspend: 1 Teb: 00000001`222d7000 Unfrozen

. 22 Id: 874c.16a54 Suspend: 1 Teb: 00000001`222e1000 Unfrozen

23 Id: 874c.10838 Suspend: 1 Teb: 00000001`222db000 Unfrozen

24 Id: 874c.10cf0 Suspend: 1 Teb: 00000001`222dd000 Unfrozen

Lots of threads, right? These were created by the common open dialog, so not the direct fault of Notepad.

Continue exploring the debugger in any way you want!

Find out the system service numbers for NtWriteFile and NtReadFile.

If you close Notepad, you’ll hit a breakpoint at process termination:

ntdll!NtTerminateProcess+0x14:

00007ffc`2047fc14 c3 ret

0:000> k

Child-SP RetAddr Call Site

00 00000001`2247f6a8 00007ffc`20446dd8 ntdll!NtTerminateProcess+0x14

01 00000001`2247f6b0 00007ffc`1f64d62a ntdll!RtlExitUserProcess+0xb8

02 00000001`2247f6e0 00007ffc`061cee58 KERNEL32!ExitProcessImplementation+0xa

03 00000001`2247f710 00007ffc`0644719e mscoreei!RuntimeDesc::ShutdownAllActiveR\

untimes+0x287

04 00000001`2247fa00 00007ffc`1fcda291 mscoree!ShellShim_CorExitProcess+0x11e

05 00000001`2247fa30 00007ffc`1fcda2ad msvcrt!_crtCorExitProcess+0x4d

06 00000001`2247fa60 00007ffc`1fcda925 msvcrt!_crtExitProcess+0xd

07 00000001`2247fa90 00007ff7`5383ae1e msvcrt!doexit+0x171

08 00000001`2247fb00 00007ffc`1f647974 notepad!__mainCRTStartup+0x1b6

09 00000001`2247fbc0 00007ffc`2044a271 KERNEL32!BaseThreadInitThunk+0x14

0a 00000001`2247fbf0 00000000`00000000 ntdll!RtlUserThreadStart+0x21

You can use the q command to quit the debugger. If the process is still alive, it will be terminated. An
alternative is to use the .detach command to disconnect from the target without killing it.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 95

Kernel Debugging

User-mode debugging involves the debugger attaching to a process, setting breakpoints that cause the
process’ threads to become suspended, and so on. Kernel-mode debugging, on the other hand, involves
controlling the entire machine with the debugger. This means that if a breakpoint is set and then hit, the
entire machine is frozen. Clearly, this cannot be achieved with a single machine. In full kernel debugging,
twomachines are involved: a host (where the debugger runs) and a target (being debugged). The target can,
however, be a virtual machine hosted on the same machine (host) where the debugger executes. Figure
5-5 shows a host and target connected via some connection medium.

Figure 5-5: Host-target connection

Before we get into full kernel debugging, we’ll take a look at its simpler cousin - local kernel debugging.

Local Kernel Debugging

Local kernel debugging (LKD) allows viewing system memory and other system information on the local
machine. The primary difference between local and full kernel debugging, is that with LKD there is no
way to set up breakpoints, which means you’re always looking at the current state of the system. It also
means that things change, even while commands are being executed, so some information may be stale
or unreliable. With full kernel debugging, commands can only be entered while the target system is in a
breakpoint, so system state is unchanged.

To configure LKD, enter the following in an elevated command prompt and then restart the system:

bcdedit /debug on

Local Kernel Debugging is protected by Secure Boot on Windows 10, Server 2016, and later. To
activate LKD you’ll have to disable Secure Boot in the machine’s BIOS settings. If, for whatever
reason, this is not possible, there is an alternative using the Sysinternals LiveKd tool. Copy
LiveKd.exe to the Debugging Tools for Windows main directory. Then launch WinDbg using
LiveKd with the following command: livekd -w. The experience is not the same, as data may
become stale because of the way Livekd works, and you may need to exit the debugger and
relaunch from time to time.

After the system is restarted, launchWinDbg elevated (the 64-bit one, if you are on a 64-bit system). Select
the menu File / Attach To Kernel (WinDbg preview) or File / Kernel Debug… (classic WinDbg). Select the
Local tab and click OK. You should see output similar to the following:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 96

Microsoft (R) Windows Debugger Version 10.0.22415.1003 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Connected to Windows 10 22000 x64 target at (Wed Sep 29 10:57:30.682 2021 (UTC \

+ 3:00)), ptr64 TRUE

************* Path validation summary **************

Response Time (ms) Location

Deferred SRV*c:\symbols*https://msdl.micr\

osoft.com/download/symbols

Symbol search path is: SRV*c:\symbols*https://msdl.microsoft.com/download/symbo\

ls

Executable search path is:

Windows 10 Kernel Version 22000 MP (6 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Edition build lab: 22000.1.amd64fre.co_release.210604-1628

Machine Name:

Kernel base = 0xfffff802`07a00000 PsLoadedModuleList = 0xfffff802`08629710

Debug session time: Wed Sep 29 10:57:30.867 2021 (UTC + 3:00)

System Uptime: 0 days 16:44:39.106

Note the prompt displays lkd. This indicates Local Kernel Debugging is active.

Local kernel Debugging Tutorial

If you’re familiar with kernel debugging commands, you can safely skip this section.

You can display basic information for all processes running on the systemwith the process 0 0 command:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS ffffd104936c8040

SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

DirBase: 006d5000 ObjectTable: ffffa58d3cc44d00 HandleCount: 3909.

Image: System

PROCESS ffffd104936e2080

SessionId: none Cid: 0058 Peb: 00000000 ParentCid: 0004

DirBase: 0182c000 ObjectTable: ffffa58d3cc4ea40 HandleCount: 0.

Image: Secure System

PROCESS ffffd1049370a080

SessionId: none Cid: 0090 Peb: 00000000 ParentCid: 0004

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 97

DirBase: 011b6000 ObjectTable: ffffa58d3cc65a80 HandleCount: 0.

Image: Registry

PROCESS ffffd10497dd0080

SessionId: none Cid: 024c Peb: bc6c2ba000 ParentCid: 0004

DirBase: 10be4b000 ObjectTable: ffffa58d3d49ddc0 HandleCount: 60.

Image: smss.exe

...

For each process, the following information is displayed:

• The address attached to the PROCESS text is the EPROCESS address of the process (in kernel space,
of course).

• SessionId - the session the process is running under.
• Cid - (client ID) the unique process ID.
• Peb - the address of the Process Environment Block (PEB). This address is in user space, naturally.
• ParentCid - (parent client ID) the process ID of the parent process. Note that it’s possible the parent
process no longer exists, so this ID may belong to some process created after the parent process
terminated.

• DirBase - physical address of the Master Page Directory for this process, used as the basis for virtual
to physical address translation. On x64, this is known as Page Map Level 4, and on x86 it’s Page
Directory Pointer Table (PDPT).

• ObjectTable - pointer to the private handle table for the process.
• HandleCount - number of handles in the handle table for this process.
• Image - executable name, or special process name for those not associated with an executable (such
as Secure System, System, Mem Compression).

The !process command accepts at least two arguments. The first indicates the process of interest using its
EPROCESS address or the unique Process ID, where zero means “all or any process”. The second argument
is the level of detail to display (a bit mask), where zero means the least amount of detail. A third argument
can be added to search for a particular executable. Here are a few examples:

List all processes running explorer.exe:

lkd> !process 0 0 explorer.exe

PROCESS ffffd1049e118080

SessionId: 1 Cid: 1780 Peb: 0076b000 ParentCid: 16d0

DirBase: 362ea5000 ObjectTable: ffffa58d45891680 HandleCount: 3208.

Image: explorer.exe

PROCESS ffffd104a14e2080

SessionId: 1 Cid: 2548 Peb: 005c1000 ParentCid: 0314

DirBase: 140fe9000 ObjectTable: ffffa58d46a99500 HandleCount: 2613.

Image: explorer.exe

List more information for a specific process by specifying its address and a higher level of detail:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 98

lkd> !process ffffd1049e7a60c0 1

PROCESS ffffd1049e7a60c0

SessionId: 1 Cid: 1374 Peb: d3e343000 ParentCid: 0314

DirBase: 37eb97000 ObjectTable: ffffa58d58a9de00 HandleCount: 224.

Image: dllhost.exe

VadRoot ffffd104b81c7db0 Vads 94 Clone 0 Private 455. Modified 2. Locked 0.

DeviceMap ffffa58d41354230

Token ffffa58d466e0060

ElapsedTime 01:04:36.652

UserTime 00:00:00.015

KernelTime 00:00:00.015

QuotaPoolUsage[PagedPool] 201696

QuotaPoolUsage[NonPagedPool] 13048

Working Set Sizes (now,min,max) (4330, 50, 345) (17320KB, 200KB, 1380KB)

PeakWorkingSetSize 4581

VirtualSize 2101383 Mb

PeakVirtualSize 2101392 Mb

PageFaultCount 5427

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 678

Job ffffd104a05ed380

As can be seen from the above output, more information on the process is displayed. Some of this infor-
mation is hyperlinked, allowing easy further examination. For example, the job this process is part of (if
any) is a hyperlink, executing the !job command if clicked.

Click on the Job address hyperlink:

lkd> !job ffffd104a05ed380

Job at ffffd104a05ed380

Basic Accounting Information

TotalUserTime: 0x0

TotalKernelTime: 0x0

TotalCycleTime: 0x0

ThisPeriodTotalUserTime: 0x0

ThisPeriodTotalKernelTime: 0x0

TotalPageFaultCount: 0x0

TotalProcesses: 0x1

ActiveProcesses: 0x1

FreezeCount: 0

BackgroundCount: 0

TotalTerminatedProcesses: 0x0

PeakJobMemoryUsed: 0x2f5

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 99

PeakProcessMemoryUsed: 0x2f5

Job Flags

[wake notification allocated]

[wake notification enabled]

[timers virtualized]

Limit Information (LimitFlags: 0x800)

Limit Information (EffectiveLimitFlags: 0x403800)

JOB_OBJECT_LIMIT_BREAKAWAY_OK

A Job is a kernel object that manages one or more processes, for which it can apply various
limits and get accounting information. A discussion of jobs is beyond the scope of this book.
More information can be found in the Windows Internals 7th edition, part 1 and Windows 10
System Programming, Part 1 books.

As usual, a command such as !job hides some information available in the real data structure. In this case,
the type is EJOB. Use the command dt nt!_ejob with the job address to see all the details.

The PEB of a process can be viewed as well by clicking its hyperlink. This is similar to the !peb command
used in user mode, but the twist here is that the correct process context must be set first, as the address is
in user space. Click the Peb hyperlink. You should see something like this:

lkd> .process /p ffffd1049e7a60c0; !peb d3e343000

Implicit process is now ffffd104`9e7a60c0

PEB at 0000000d3e343000

InheritedAddressSpace: No

ReadImageFileExecOptions: No

BeingDebugged: No

ImageBaseAddress: 00007ff661180000

NtGlobalFlag: 0

NtGlobalFlag2: 0

Ldr 00007ffb37ef9120

Ldr.Initialized: Yes

Ldr.InInitializationOrderModuleList: 000001d950004560 . 000001d95005a960

Ldr.InLoadOrderModuleList: 000001d9500046f0 . 000001d95005a940

Ldr.InMemoryOrderModuleList: 000001d950004700 . 000001d95005a950

Base TimeStamp Module

7ff661180000 93f44fbf Aug 29 00:12:31 2048 C:\WINDOWS\system32\DllH\

ost.exe

7ffb37d80000 50702a8c Oct 06 15:56:44 2012 C:\WINDOWS\SYSTEM32\ntdl\

l.dll

7ffb36790000 ae0b35b0 Jul 13 01:50:24 2062 C:\WINDOWS\System32\KERN\

EL32.DLL

...

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 100

The correct process context is set with the .processmeta command, and then the PEB is displayed. This is
a general technique you need to use to showmemory that is in user space - always make sure the debugger
is set to the correct process context.

Execute the !process command again, but with the second bit set for the details:

lkd> !process ffffd1049e7a60c0 2

PROCESS ffffd1049e7a60c0

SessionId: 1 Cid: 1374 Peb: d3e343000 ParentCid: 0314

DirBase: 37eb97000 ObjectTable: ffffa58d58a9de00 HandleCount: 221.

Image: dllhost.exe

THREAD ffffd104a02de080 Cid 1374.022c Teb: 0000000d3e344000 Win32Thread: \

ffffd104b82ccbb0 WAIT: (UserRequest) UserMode Non-Alertable

ffffd104b71d2860 SynchronizationEvent

THREAD ffffd104a45e8080 Cid 1374.0f04 Teb: 0000000d3e352000 Win32Thread: \

ffffd104b82ccd90 WAIT: (WrUserRequest) UserMode Non-Alertable

ffffd104adc5e0c0 QueueObject

THREAD ffffd104a229a080 Cid 1374.1ed8 Teb: 0000000d3e358000 Win32Thread: \

ffffd104b82cf900 WAIT: (UserRequest) UserMode Non-Alertable

ffffd104b71dfb60 NotificationEvent

ffffd104ad02a740 QueueObject

THREAD ffffd104b78ee040 Cid 1374.0330 Teb: 0000000d3e37a000 Win32Thread: \

0000000000000000 WAIT: (WrQueue) UserMode Alertable

ffffd104adc4f640 QueueObject

Detail level 2 shows a summary of the threads in the process along with the object(s) they are waiting on
(if any).

You can use other detail values (4, 8), or combine them, such as 3 (1 or 2).

Repeat the !process command again, but this time with no detail level. More information is shown for
the process (the default in this case is full details):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 101

lkd> !process ffffd1049e7a60c0

PROCESS ffffd1049e7a60c0

SessionId: 1 Cid: 1374 Peb: d3e343000 ParentCid: 0314

DirBase: 37eb97000 ObjectTable: ffffa58d58a9de00 HandleCount: 223.

Image: dllhost.exe

VadRoot ffffd104b81c7db0 Vads 94 Clone 0 Private 452. Modified 2. Locked 0.

DeviceMap ffffa58d41354230

Token ffffa58d466e0060

ElapsedTime 01:10:30.521

UserTime 00:00:00.015

KernelTime 00:00:00.015

QuotaPoolUsage[PagedPool] 201696

QuotaPoolUsage[NonPagedPool] 13048

Working Set Sizes (now,min,max) (4329, 50, 345) (17316KB, 200KB, 1380KB)

PeakWorkingSetSize 4581

VirtualSize 2101383 Mb

PeakVirtualSize 2101392 Mb

PageFaultCount 5442

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 678

Job ffffd104a05ed380

THREAD ffffd104a02de080 Cid 1374.022c Teb: 0000000d3e344000 Win32Thread: \

ffffd104b82ccbb0 WAIT: (UserRequest) UserMode Non-Alertable

ffffd104b71d2860 SynchronizationEvent

Not impersonating

DeviceMap ffffa58d41354230

Owning Process ffffd1049e7a60c0 Image: dllhost.exe

Attached Process N/A Image: N/A

Wait Start TickCount 3641927 Ticks: 270880 (0:01:10:32.500)

Context Switch Count 27 IdealProcessor: 2

UserTime 00:00:00.000

KernelTime 00:00:00.000

Win32 Start Address 0x00007ff661181310

Stack Init ffffbe88b4bdf630 Current ffffbe88b4bdf010

Base ffffbe88b4be0000 Limit ffffbe88b4bd9000 Call 0000000000000000

Priority 8 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5

Kernel stack not resident.

THREAD ffffd104a45e8080 Cid 1374.0f04 Teb: 0000000d3e352000 Win32Thread: \

ffffd104b82ccd90 WAIT: (WrUserRequest) UserMode Non-Alertable

ffffd104adc5e0c0 QueueObject

Not impersonating

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 102

DeviceMap ffffa58d41354230

Owning Process ffffd1049e7a60c0 Image: dllhost.exe

Attached Process N/A Image: N/A

Wait Start TickCount 3910734 Ticks: 2211 (0:00:00:34.546)

Context Switch Count 2684 IdealProcessor: 4

UserTime 00:00:00.046

KernelTime 00:00:00.078

Win32 Start Address 0x00007ffb3630f230

Stack Init ffffbe88b4c87630 Current ffffbe88b4c86a10

Base ffffbe88b4c88000 Limit ffffbe88b4c81000 Call 0000000000000000

Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5

Child-SP RetAddr Call Site

ffffbe88`b4c86a50 fffff802`07c5dc17 nt!KiSwapContext+0x76

ffffbe88`b4c86b90 fffff802`07c5fac9 nt!KiSwapThread+0x3a7

ffffbe88`b4c86c70 fffff802`07c59d24 nt!KiCommitThreadWait+0x159

ffffbe88`b4c86d10 fffff802`07c8ac70 nt!KeWaitForSingleObject+0x234

ffffbe88`b4c86e00 fffff9da`6d577d46 nt!KeWaitForMultipleObjects+0x540

ffffbe88`b4c86f00 fffff99c`c175d920 0xfffff9da`6d577d46

ffffbe88`b4c86f08 fffff99c`c175d920 0xfffff99c`c175d920

ffffbe88`b4c86f10 00000000`00000001 0xfffff99c`c175d920

ffffbe88`b4c86f18 ffffd104`9a423df0 0x1

ffffbe88`b4c86f20 00000000`00000001 0xffffd104`9a423df0

ffffbe88`b4c86f28 ffffbe88`b4c87100 0x1

ffffbe88`b4c86f30 00000000`00000000 0xffffbe88`b4c87100

...

The command lists all threads within the process. Each thread is represented by its ETHREAD address
attached to the text “THREAD”. The call stack is listed as well - the module prefix “nt” represents the
kernel - there is no need to use the real kernel module name.

One of the reasons to use “nt” instead of explicitly stating the kernel’s module name is because these are
different between 64 and 32 bit systems (ntoskrnl.exe on 64 bit, and ntkrnlpa.exe on 32 bit); and it’s a lot
shorter.

User-mode symbols are not loaded by default, so thread stacks that span to user mode show just numeric
addresses. You can load user symbols explicitly with .reload /user after setting the process context to
the process of interest with the .process command:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 103

lkd> !process 0 0 explorer.exe

PROCESS ffffd1049e118080

SessionId: 1 Cid: 1780 Peb: 0076b000 ParentCid: 16d0

DirBase: 362ea5000 ObjectTable: ffffa58d45891680 HandleCount: 3217.

Image: explorer.exe

PROCESS ffffd104a14e2080

SessionId: 1 Cid: 2548 Peb: 005c1000 ParentCid: 0314

DirBase: 140fe9000 ObjectTable: ffffa58d46a99500 HandleCount: 2633.

Image: explorer.exe

lkd> .process /p ffffd1049e118080

Implicit process is now ffffd104`9e118080

lkd> .reload /user

Loading User Symbols

..

lkd> !process ffffd1049e118080

PROCESS ffffd1049e118080

SessionId: 1 Cid: 1780 Peb: 0076b000 ParentCid: 16d0

DirBase: 362ea5000 ObjectTable: ffffa58d45891680 HandleCount: 3223.

Image: explorer.exe

...

THREAD ffffd1049e47c400 Cid 1780.1754 Teb: 000000000078c000 Win32Thread: \

ffffd1049e5da7a0 WAIT: (WrQueue) UserMode Alertable

ffffd1049e076480 QueueObject

IRP List:

ffffd1049fbea9b0: (0006,0478) Flags: 00060000 Mdl: 00000000

ffffd1049efd6aa0: (0006,0478) Flags: 00060000 Mdl: 00000000

ffffd1049efee010: (0006,0478) Flags: 00060000 Mdl: 00000000

ffffd1049f3ef8a0: (0006,0478) Flags: 00060000 Mdl: 00000000

Not impersonating

DeviceMap ffffa58d41354230

Owning Process ffffd1049e118080 Image: explorer.exe

Attached Process N/A Image: N/A

Wait Start TickCount 3921033 Ticks: 7089 (0:00:01:50.765)

Context Switch Count 16410 IdealProcessor: 5

UserTime 00:00:00.265

KernelTime 00:00:00.234

Win32 Start Address ntdll!TppWorkerThread (0x00007ffb37d96830)

Stack Init ffffbe88b5fc7630 Current ffffbe88b5fc6d20

Base ffffbe88b5fc8000 Limit ffffbe88b5fc1000 Call 0000000000000000

Priority 9 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5

Child-SP RetAddr Call Site

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 104

ffffbe88`b5fc6d60 fffff802`07c5dc17 nt!KiSwapContext+0x76

ffffbe88`b5fc6ea0 fffff802`07c5fac9 nt!KiSwapThread+0x3a7

ffffbe88`b5fc6f80 fffff802`07c62526 nt!KiCommitThreadWait+0x159

ffffbe88`b5fc7020 fffff802`07c61f38 nt!KeRemoveQueueEx+0x2b6

ffffbe88`b5fc70d0 fffff802`07c6479c nt!IoRemoveIoCompletion+0x98

ffffbe88`b5fc71f0 fffff802`07e25075 nt!NtWaitForWorkViaWorkerFactory+0x\

39c

ffffbe88`b5fc7430 00007ffb`37e26e84 nt!KiSystemServiceCopyEnd+0x25 (Tra\

pFrame @ ffffbe88`b5fc74a0)

00000000`03def858 00007ffb`37d96b0f ntdll!NtWaitForWorkViaWorkerFactory\

+0x14

00000000`03def860 00007ffb`367a54e0 ntdll!TppWorkerThread+0x2df

00000000`03defb50 00007ffb`37d8485b KERNEL32!BaseThreadInitThunk+0x10

00000000`03defb80 00000000`00000000 ntdll!RtlUserThreadStart+0x2b

...

Notice the thread above has issued several IRPs as well. We’ll discuss this in greater detail in chapter 7.

A thread’s information can be viewed separately with the !thread command and the address of the thread.
Check the debugger documentation for the description of the various pieces of information displayed by
this command.

Other generally useful/interesting commands in kernel-mode debugging include:

• !pcr - display the Process Control Region (PCR) for a processor specified as an additional index
(processor 0 is displayed by default if no index is specified).

• !vm - display memory statistics for the system and processes.
• !running - displays information on threads running on all processors on the system.

We’ll look at more specific commands useful for debugging drivers in subsequent chapters.

Full Kernel Debugging

Full kernel debugging requires configuration on the host and target. In this section, we’ll see how to
configure a virtual machine as a target for kernel debugging. This is the recommended andmost convenient
setup for kernel driver work (when not developing device drivers for hardware). We’ll go through the
steps for configuring a Hyper-V virtual machine. If you’re using a different virtualization technology (e.g.
VMWare or VirtualBox), please consult that product’s documentation or the web for the correct procedure
to get the same results.

The target and host machines must communicate using some communication media. There are several
options available. The fastest communication option is to use the network. Unfortunately, this requires the
host and target to run Windows 8 at a minimum. Since Windows 7 is still a viable target, there is another
convenient option - the COM (serial) port, which can be exposed as a named pipe to the host machine. All
virtualization platforms allow redirecting a virtual serial port to a named pipe on the host. We’ll look at
both options.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 105

Just like Local Kernel Debugging, the target machine cannot use Secure Boot. With full kernel
debugging, there is no workaround.

Using a Virtual Serial Port

In this section, we’ll configure the target and host to use a virtual COM port exposed as a named pipe to
the host. In the next section, we’ll configure kernel debugging using the network.

Configuring the Target

The target VM must be configured for kernel debugging, similar to local kernel debugging, but with the
added connection media set to a virtual serial port on that machine.

One way to do the configuration is using bcdedit in an elevated command window:

bcdedit /debug on

bcdedit /dbgsettings serial debugport:1 baudrate:115200

Change the debug port number according to the actual virtual serial number (typically 1).

The VMmust be restarted for these configurations to take effect. Before you do that, we can map the serial
port to a named pipe. Here is the procedure for Hyper-V virtual machines:

If the Hyper-V VM is Generation 1 (older), there is a simple UI in the VM’s settings to do the configuration.
Use the Add Hardware option to add a serial port if there are none defined. Then configure the serial port
to be mapped to a named port of your choosing. Figure 5-6 shows this dialog.hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 106

Figure 5-6: Mapping serial port to named pipe for Hyper-V Gen-1 VM

For Generation 2 VMs, no UI is currently available. To configure this, make sure the VM is shut down, and
open an elevated PowerShell window.

Type the following to set a serial port mapped to a named pipe:

PS C:\>Set-VMComPort myvmname -Number 1 -Path "\\.\pipe\debug"

Change the VM name appropriately and the COM port number as set inside the VM earlier with bcdedit.
Make sure the pipe path is unique.

You can verify the settings are as expected with Get-VMComPort:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 107

PS C:\>Get-VMComPort myvmname

VMName Name Path

------ ---- ----

myvmname COM 1 \\.\pipe\debug

myvmname COM 2

You can boot the VM - the target is now ready.

Configuring the Host

The kernel debugger must be properly configured to connect with the VM on the same serial port mapped
to the same named pipe exposed on the host.

Launch the kernel debugger elevated, and select File / Attach To Kernel. Navigate to the COM tab. Fill in
the correct details as they were set on the target. Figure 5-7 shows what these settings look like.

Figure 5-7: Setting host COM port configuration

Click OK. The debugger should attach to the target. If it does not, click the Break toolbar button. Here is
some typical output:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 108

Microsoft (R) Windows Debugger Version 10.0.18317.1001 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Opened \\.\pipe\debug

Waiting to reconnect...

Connected to Windows 10 18362 x64 target at (Sun Apr 21 11:28:11.300 2019 (UTC \

+ 3:00)), ptr64 TRUE

Kernel Debugger connection established. (Initial Breakpoint requested)

************* Path validation summary **************

Response Time (ms) Location

Deferred SRV*c:\Symbols*http://msdl.micro\

soft.com/download/symbols

Symbol search path is: SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

Windows 10 Kernel Version 18362 MP (4 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 18362.1.amd64fre.19h1_release.190318-1202

Machine Name:

Kernel base = 0xfffff801`36a09000 PsLoadedModuleList = 0xfffff801`36e4c2d0

Debug session time: Sun Apr 21 11:28:09.669 2019 (UTC + 3:00)

System Uptime: 1 days 0:12:28.864

Break instruction exception - code 80000003 (first chance)

* *

* You are seeing this message because you pressed either *

* CTRL+C (if you run console kernel debugger) or, *

* CTRL+BREAK (if you run GUI kernel debugger), *

* on your debugger machine's keyboard. *

* *

* THIS IS NOT A BUG OR A SYSTEM CRASH *

* *

* If you did not intend to break into the debugger, press the "g" key, then *

* press the "Enter" key now. This message might immediately reappear. If it *

* does, press "g" and "Enter" again. *

* *

nt!DbgBreakPointWithStatus:

fffff801`36bcd580 cc int 3

Note the prompt has an index and the word kd. The index is the current processor that induced the break.
At this point, the target VM is completely frozen. You can now debug normally, bearing in mind anytime
you break somewhere, the entire machine is frozen.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 109

Using the Network

In this section, we’ll configure full kernel debugging using the network, focusing on the differences com-
pared to the virtual COM port setup.

Configuring the Target

On the target machine, running with an elevated command window, configure network debugging using
the following format with bcdedit :

bcdedit /dbgsettings net hostip:<ip> port: <port> [key: <key>]

The hostip must be the IP address of the host accessible from the target. port can be any available port on
the host, but the documentation recommends working with port 50000 and up. The key is optional. If you
don’t specify it, the command generates a random key. For example:

bcdedit /dbgsettings net hostip:10.100.102.53 port:51111

Key=1rhvit77hdpv7.rxgwjdvhxj7v.312gs2roip4sf.3w25wrjeocobh

The alternative is provide your own key for simplicity, which must be in the format a.b.c.d. This is
acceptable from a security standpoint when working with local virtual machines:

bcdedit /dbgsettings net hostip:10.100.102.53 port:51111 key:1.2.3.4

Key=1.2.3.4

You can always display the current debug configuration with /dbgsettings alone:

bcdedit /dbgsettings

key 1.2.3.4

debugtype NET

hostip 10.100.102.53

port 51111

dhcp Yes

The operation completed successfully.

Finally, restart the target.

Configuring the Host

On the host machine, launch the debugger and select the File / Attach the Kernel option (or File / Kernel
Debug… in the classicWinDbg). Navigate to theNET tab, and enter the information corresponding to your
settings (figure 5-7).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 110

Figure 5-8: Attach to kernel dialog

You may need to click the Break button (possibly multiple times) to establish a connection. More in-
formation and troubeshooting tips can be found at https://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/setting-up-a-network-debugging-connection.

Kernel Driver Debugging Tutorial

Once host and target are connected, debugging can begin. We will use the Booster driver we developed in
chapter 4 to demonstrate full kernel debugging.

Install (but don’t load) the driver on the target as was done in chapter 4. Make sure you copy the driver’s
PDB file alongside the driver SYS file itself. This simplifies getting correct symbols for the driver.

Let’s set a breakpoint in DriverEntry. We cannot load the driver just yet because that would cause
DriverEntry to execute, and we’ll miss the chance to set a breakpoint there. Since the driver is not loaded
yet, we can use the bu command (unresolved breakpoint) to set a future breakpoint. Break into the target
if it’s currently running, and type the following command in the debugger:

0: kd> bu booster!driverentry

0: kd> bl

0 e Disable Clear u 0001 (0001) (booster!driverentry)

The breakpoint is unresolved at this point, since our module (driver) is not yet loaded. The debugger will
re-evaluate the breakpoint any time a new module is loaded.

Issue the g command to let the target continue execution, and load the driver with sc start booster
(assuming the driver’s name is booster). If all goes well, the breakpoint should hit, and the source file
should open automatically, showing the following output in the command window:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection

Chapter 5: Debugging and Tracing 111

0: kd> g

Breakpoint 0 hit

Booster!DriverEntry:

fffff802`13da11c0 4889542410 mov qword ptr [rsp+10h],rdx

The index on the left of the colon is the CPU index running the code when the breakpoint hit
(CPU 0 in the above output).

Figure 5-9 shows a screenshot of WinDbg Preview source window automatically opening and the correct
line marked. The Locals window is also shown as expected.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 112

Figure 5-9: Breakpoint hit in DriverEntry

At this point, you can step over source lines, look at variables in the Locals window, and even add
expressions to the Watch window. You can also change values using the Locals window just like you
would normally do with other debuggers.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 113

TheCommand window is still available as always, but some operations are just easier with the GUI. Setting
breakpoints, for example, can be done with the normal bp command, but you can simply open a source
file (if it’s not already open), go to the line where you want to set a breakpoint, and hit F9 or click the
appropriate button on the toolbar. Either way, the bp command will be executed in the Command window.
The Breakpoints window can serve as a quick overview of the currently set breakpoints.

• Issue the k command to see how DriverEntry is being invoked:

0: kd> k

Child-SP RetAddr Call Site

00 ffffbe88`b3f4f138 fffff802`13da5020 Booster!DriverEntry [D:\Dev\windowsk\

ernelprogrammingbook2e\Chapter04\Booster\Booster.cpp @ 9]

01 ffffbe88`b3f4f140 fffff802`081cafc0 Booster!GsDriverEntry+0x20 [minkerne\

l\tools\gs_support\kmode\gs_support.c @ 128]

02 ffffbe88`b3f4f170 fffff802`080858e2 nt!PnpCallDriverEntry+0x4c

03 ffffbe88`b3f4f1d0 fffff802`081aeab7 nt!IopLoadDriver+0x8ba

04 ffffbe88`b3f4f380 fffff802`07c48aaf nt!IopLoadUnloadDriver+0x57

05 ffffbe88`b3f4f3c0 fffff802`07d5b615 nt!ExpWorkerThread+0x14f

06 ffffbe88`b3f4f5b0 fffff802`07e16c24 nt!PspSystemThreadStartup+0x55

07 ffffbe88`b3f4f600 00000000`00000000 nt!KiStartSystemThread+0x34

If breakpoints fail to hit, it may be a symbols issue. Execute the .reload command and see
if the issues are resolved. Setting breakpoints in user space is also possible, but first execute
.reload /user to force the debugger to load user-mode symbols.

It may be the case that a breakpoint should hit only when a specific process is the one executing the code.
This can be done by adding the /p switch to a breakpoint. In the following example, a breakpoint is set
only if the process is a specific explorer.exe:

0: kd> !process 0 0 explorer.exe

PROCESS ffffd1049e118080

SessionId: 1 Cid: 1780 Peb: 0076b000 ParentCid: 16d0

DirBase: 362ea5000 ObjectTable: ffffa58d45891680 HandleCount: 3918.

Image: explorer.exe

PROCESS ffffd104a14e2080

SessionId: 1 Cid: 2548 Peb: 005c1000 ParentCid: 0314

DirBase: 140fe9000 ObjectTable: ffffa58d46a99500 HandleCount: 4524.

Image: explorer.exe

0: kd> bp /p ffffd1049e118080 booster!boosterwrite

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 114

0: kd> bl

0 e Disable Clear fffff802`13da11c0 [D:\Dev\Chapter04\Booster\Booster.cp\

p @ 9] 0001 (0001) Booster!DriverEntry

1 e Disable Clear fffff802`13da1090 [D:\Dev\Chapter04\Booster\Booster.cp\

p @ 61] 0001 (0001) Booster!BoosterWrite

Match process data ffffd104`9e118080

Let’s set a normal breakpoint somewhere in the BoosterWrite function, by hitting F9 on the line in source
view, as shown in figure 5-10 (the earlier conditional breakpoint is shown as well).

Figure 5-10: Breakpoint hit in DriverEntry

Listing the breakpoints reflect the new breakpoint with the offset calculated by the debugger:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 115

0: kd> bl

0 e Disable Clear fffff802`13da11c0 [D:\Dev\Chapter04\Booster\Booster.cpp @\

9] 0001 (0001) Booster!DriverEntry

1 e Disable Clear fffff802`13da1090 [D:\Dev\Chapter04\Booster\Booster.cpp @\

61] 0001 (0001) Booster!BoosterWrite

Match process data ffffd104`9e118080

2 e Disable Clear fffff802`13da10af [D:\Dev\Chapter04\Booster\Booster.cpp @\

65] 0001 (0001) Booster!BoosterWrite+0x1f

Enter the g command to release the target, and then run the boost application with some thread ID and
priority:

c:\Test> boost 5964 30

The breakpoint within BoosterWrite should hit:

Breakpoint 2 hit

Booster!BoosterWrite+0x1f:

fffff802`13da10af 488b4c2468 mov rcx,qword ptr [rsp+68h]

You can continue debugging normally, looking at local variables, stepping over/into functions, etc.

Finally, if you would like to disconnect from the target, enter the .detach command. If it does not resume
the target, click the Stop Debugging toolbar button (you may need to click it multiple times).

Asserts and Tracing

Although using a debugger is sometimes necessary, some coding can go a long way in making a debugger
less needed. In this section we’ll examine asserts and powerful logging that is suitable for both debug and
release builds of a driver.

Asserts

Just like in user mode, asserts can be used to verify that certain assumptions are correct. An invalid
assumption means something is very wrong, so it’s best to stop. The WDK header provides the NT_ASSERT
macro for this purpose.

NT_ASSERT accepts something that can be converted to a Boolean value. If the result is non-zero (true),
execution continues. Otherwise, the assertion has failed, and the system takes one of the following actions:

• If a kernel debugger is attached, an assertion failure breakpoint is raised, allowing debugging the
assertion.

• If a kernel debugger is not attached, the system bugchecks. The resulting dump file will poinpoint
the exact line where the assertion has failed.

Here is a simple assert usage added to the DriverEntry function in the Booster driver from chapter 4:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 116

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

DriverObject->DriverUnload = BoosterUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] = BoosterCreateClose;

DriverObject->MajorFunction[IRP_MJ_CLOSE] = BoosterCreateClose;

DriverObject->MajorFunction[IRP_MJ_WRITE] = BoosterWrite;

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Booster");

PDEVICE_OBJECT DeviceObject;

NTSTATUS status = IoCreateDevice(

DriverObject, // our driver object

0, // no need for extra bytes

&devName, // the device name

FILE_DEVICE_UNKNOWN, // device type

0, // characteristics flags

FALSE, // not exclusive

&DeviceObject); // the resulting pointer

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to create device object (0x%08X)\n", status));

return status;

}

NT_ASSERT(DeviceObject);

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to create symbolic link (0x%08X)\n", status));

IoDeleteDevice(DeviceObject);

return status;

}

NT_ASSERT(NT_SUCCESS(status));

return STATUS_SUCCESS;

}

The first assert makes sure the device object pointer is non-NULL:

NT_ASSERT(DeviceObject);

The second makes sure the status at the end of DriverEntry is a successful one:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 117

NT_ASSERT(NT_SUCCESS(status));

NT_ASSERT only compiles its expression in Debug builds, which makes using asserts practically free from
a performance standpoint, as these will not be part of the final released driver. This also means you need
to be careful that the expression inside NT_ASSERT has no side effects. For example, the following code is
wrong:

NT_ASSERT(NT_SUCCESS(IoCreateSymbolicLink(...)));

This is because the call to IoCreateSymbolicLinkwill disappear completely in Release build. The correct
way to assert would be something like the following:

status = IoCreateSymbolicLink(...);

NT_ASSERT(NT_SUCCESS(status));

Asserts are useful and should be used liberally because they only have an effect in Debug builds.

Extended DbgPrint

We’ve seen usage of the DbgPrint function (and the KdPrintmacro) to generate output that can be viewed
with the kernel debugger or a comparable tool, such as DebugView. This works, and is simple to use, but
has some significant downsides:

• All the output is generated - there is no easy way to filter output to show just some output (such
as errors and warnings only). This is partially mitigated with the extended DbgPrintEx function
described in the next paragraph.

• DbgPrint(Ex) is a relatively slow function, which is why it’s mostly used with KdPrint so that the
overhead is removed in Release builds. But output in Release builds could be very important. Some
bugs may only happen in Release builds, where good output could be useful for diagnosing issues.

• There is no semantic meaning associated with DbgPrint - it’s just text. There is no way to add
values with property name or type information.

• There is no built-in way to save the output to a file rather than just see it in the debugger. if using
DebugView, it allows saving its output to a file.

The output from DbgPrint(Ex) is limited to 512 bytes. Any remaining bytes are lost.

The DbgPrintEx function (and the associated KdPrintEx macro) were added to provide some filtering
support for DbgPrint output:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 118

ULONG DbgPrintEx (

In ULONG ComponentId,

In ULONG Level,

_In_z_ _Printf_format_string_ PCSTR Format,

...); // any number of args

A list of component Ids is present in the <dpfilter.h> header (common to user and kernel mode), currently
containing 155 valid values (0 to 154). Most values are used by the kernel and Microsoft drivers, except for
a handlful that are meant to be used by third-party drivers:

• DPFLTR_IHVVIDEO_ID (78) - for video drivers.
• DPFLTR_IHVAUDIO_ID (79) - for audio drivers.
• DPFLTR_IHVNETWORK_ID (80) - for network drivers.
• DPFLTR_IHVSTREAMING_ID (81) - for streaming drivers.
• DPFLTR_IHVBUS_ID (82) - for bus drivers.
• DPFLTR_IHVDRIVER_ID (77) - for all other drivers.
• DPFLTR_DEFAULT_ID (101) - used with DbgPrint or if an illegal component number is used.

For most drivers, the DPFLTR_IHVDRIVER_ID component ID should be used.

The Level parameter indicates the severity of the message (error, warning, information, etc.), but can
technically mean anything you want. The interpretation of this value depends on whether the value is
between 0 and 31, or greater than 31:

• 0 to 31 - the level is a single bit formed by the expression 1 << Level. For example, if Level is 5,
then the value is 32.

• Anything greater than 31 - the value is used as is.

<dpfilter.h> defines a few constants that can be used as is for Level:

#define DPFLTR_ERROR_LEVEL 0

#define DPFLTR_WARNING_LEVEL 1

#define DPFLTR_TRACE_LEVEL 2

#define DPFLTR_INFO_LEVEL 3

You can define more (or different) values as needed. The final result of whether the output will make its
way to its destination depends on the component ID, the bit mask formed by the Level argument, and on
a global mask read from the Debug Print Filter Registry key at system startup. Since the Debug Print Filter
key does not exist by default, there is a default value for all component IDs, which is zero. This means that
actual level value is 1 (1 << 0). The output will go through if either of the following conditions is true
(value is the value specified by the Level argument to DbgPrintEx):

• If value & (Debug print Filter value for that component) is non-zero, the output goes
through. With the default, it’s (value & 1) != 0.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 119

• If the result of the value ANDed with the Level of the ComponentId is non-zero, the output goes
through.

If neither is true, the output is dropped.

Setting the component ID level can be done in one of three ways:

• Using the Debug Print Filter key under HKLM\System\CCS\Control\Session Manager. DWORD values
can be specified where their name is the macro name of a component ID without the prefix or suffix.
For example, for DPFLTR_IHVVIDEO_ID, you would set the name to “IHVVIDEO”.

• If a kernel debugger is connected, the level of a component can be changed during debugging. For
example, the following command changes the level of DPFLTR_IHVVIDEO_ID to 0x1ff:

ed Kd_IHVVIDEO_Mask 0x1ff

The Debug Print Filter value can also be changed with the kernel debugger by using the global
kernel variable Kd_WIN2000_Mask.

• The last option is to make the change through the NtSetDebugFilterState native API. It’s undocu-
mented, but it may be useful in practice. The Dbgkflt tool, available in the Tools folder in the book’s
samples repositpry, makes use of this API (and its query counterpart, NtQueryDebugFilterState),
so that changes can be made even if a kernel debugger is not attached.

If NtSetDebugFilterState is called from user mode, the caller must have the Debug privilege in its
token. Since administrators have this privilege by default (but not non-admin users), youmust run dbgkflt
from an elevated command window for the change to succeed.

The kernel-mode APIs provided by the <wdm.h> are DbgQueryDebugFilterState and
DbgSetDebugFilterState. These are still undocumented, but at least their declaration is
available. They use the same parameters and return type as their native invokers. This means
you can call these APIs from the driver itself if desired (perhaps based on configuration read
from the Registry).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 120

Using Dbgkflt
Running Dbgkflt with no arguments shows its usage.
To query the effective level of a given component, add the component name (without the prefix or suffix).
For example:

dbgkflt default

This returns the effective bits for the DPFLTR_DEFAULT_ID component. To change the value to something
else, specify the value you want. It’s always ORed with 0x80000000 so that the bits you specify are
directly used, rather than interpreting numbers lower than 32 as (1 << number). For example, the
following sets the first 4 bits for the DEFAULT component:

dbgkflt default 0xf

DbgPrint is just a shortcut that calls DbgPrintEx with the DPFLTR_DEFAULT_ID component like so (this
is conceptual and will not compile):

ULONG DbgPrint (PCSTR Format, arguments) {

return DbgPrintEx(DPFLTR_DEFAULT_ID, DPFLTR_INFO_LEVEL, Format, arguments);

}

This explains why the DWORD named DEFAULT with a value of 8 (1 << DPFLTR_INFO_LEVEL) is the value
to write in the Registry to get DbgPrint output to go through.

Given the above details, a driver can use DbgPrintEx (or the KdPrintExmacro) to specify different levels
so that output can be filtered as needed. Each call, however, may be somewhat verbose. For example:

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_INFO_LEVEL,

"Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

Obviously, we might prefer a simpler function that always uses DPFLTR_IHVDRIVER_ID (the one that
should be used for generic third-party drivers), like so:

Log(DPFLTR_INFO_LEVEL,

"Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

We can go even further by defining specific functions that use a log level implicitly:

LogInfo("Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

Here is an examplewherewe define several bits to be used by creating an enumeration (there is no necessity
to used the defined ones):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 121

enum class LogLevel {

Error = 0,

Warning,

Information,

Debug,

Verbose

};

Each value is associated with a small number (below 32), so that the values are interpreted as powers of
two by DbgPrintEx. Now we can define functions like the following:

ULONG Log(LogLevel level, PCSTR format, ...);

ULONG LogError(PCSTR format, ...);

ULONG LogWarning(PCSTR format, ...);

ULONG LogInfo(PCSTR format, ...);

ULONG LogDebug(PCSTR format, ...);

and so on. Log is the most generic function, while the others use a predefined log level. Here is the
implementation of the first two functions:

#include <stdarg.h>

ULONG Log(LogLevel level, PCSTR format, ...) {

va_list list;

va_start(list, format);

return vDbgPrintEx(DPFLTR_IHVDRIVER_ID,

static_cast<ULONG>(level), format, list);

}

ULONG LogError(PCSTR format, ...) {

va_list list;

va_start(list, format);

return vDbgPrintEx(DPFLTR_IHVDRIVER_ID,

static_cast<ULONG>(LogLevel::Error), format, list);

}

The use of static_cast in the above code is required in C++, as scoped enums don’t
automatically convert to integers. You can use a C-style cast instead, if you prefer. If you’re
using pure C, change the scoped enum to a standard enum (remove the class keyword).

The return value from the various DbgPrint variants is typed as a ULONG, but is in fact a
standard NTSTATUS.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 122

The implementation uses the classic C variable arguments ellipsis (...) and implements these as you
would in standard C. The implementation calls vDbgPrintEx that accepts a va_list, which is necessary
for this to work correctly.

It’s possible to create something more elaborate using the C++ variadic template feature. This
is left as an exercise to the interested (and enthusiastic) reader.

The above code can be found in the Booster2 project, part of the samples for this chapter. As part of that
project, here are a few examples where these functions are used:

// in DriverEntry

Log(LogLevel::Information, "Booster2: DriverEntry called. Registry Path: %wZ\n"\

,

RegistryPath);

// unload routine

LogInfo("Booster2: unload called\n");

// when an error is encountered creating a device object

LogError("Failed to create device object (0x%08X)\n", status);

// error locating thread ID

LogError("Failed to locate thread %u (0x%X)\n",

data->ThreadId, status);

// success in changing thread priority

LogInfo("Priority for thread %u changed from %d to %d\n",

data->ThreadId, oldPriority, data->Priority);

Other Debugging Functions

The previous section used vDbgPrintEx, defined like so:

ULONG vDbgPrintEx(

In ULONG ComponentId,

In ULONG Level,

_In_z_ PCCH Format,

In va_list arglist);

It’s identical to DbgPrintEx, except its last argument is an already constructed va_list. A wrapper macro
exists as well - vKdPrintEx (compiled in Debug builds only).

Lastly, there is yet another extended function for printing - vDbgPrintExWithPrefix:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 123

ULONG vDbgPrintExWithPrefix (

_In_z_ PCCH Prefix,

In ULONG ComponentId,

In ULONG Level,

_In_z_ PCCH Format,

In va_list arglist);

It adds a prefix (first parameter) to the output. This is useful to distinguish our driver from other drivers
using the same functions. It also allows easy filtering in tools such as DebugView. For example, this code
snippet shown earlier uses an explicit prefix:

LogInfo("Booster2: unload called\n");

We can define one as a macro, and use it as the first word in any output like so:

#define DRIVER_PREFIX "Booster2: "

LogInfo(DRIVER_PREFIX "unload called\n");

This works, but it could be nicer by adding the prefix in every call automatically, by calling
vDbgPrintExWithPrefix instead of vDbgPrintEx in the Log implementations. For example:

ULONG Log(LogLevel level, PCSTR format, ...) {

va_list list;

va_start(list, format);

return vDbgPrintExWithPrefix("Booster2", DPFLTR_IHVDRIVER_ID,

static_cast<ULONG>(level), format, list);

}

Complete the implementation of the Log functions variants.

Trace Logging

Using DbgPrint and its variants is convenient enough, but as discussed earlier has some drawbacks. Trace
logging is a powerful alternative (or complementary) that uses Event Tracing for Windows (ETW) for
logging purposes, that can be captured live or to a log file. ETW has the additional benefits of being
performant (can be used to log thousands of events per second without any noticeable delay), and has
semantic information not available with the simple strings generated by the DbgPrint functions.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 124

Trace logging can be used in exactly the same way in user mode as well.

ETW is beyond the scope of this book. You can find more information in the official
documentation or in my book “Windows 10 System Programming, Part 2”.

To get started with trace logging, an ETW provider has to be defined. Contrary to “classic” ETW, no
provider registration is necessary, as trace logging ensures the even metadata is part of the logged infor-
mation, and as such is self-contained.

A provider must have a unique GUID. You can generate one with the Create GUID tool available with
Visual Studio (Toolsmenu). Figure 5-11 shows a screenshot of the tool with the second radio button selected,
as it’s the closest to the format we need. Click the Copy button to copy that text to the clipboard.

Figure 5-11: The Create GUID tool

Paste the text to themain source file of the driver and change the pastedmacro to TRACELOGGING_DEFINE_-
PROVIDER to look like this:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 125

// {B2723AD5-1678-446D-A577-8599D3E85ECB}

TRACELOGGING_DEFINE_PROVIDER(g_Provider, "Booster", \

(0xb2723ad5, 0x1678, 0x446d, 0xa5, 0x77, 0x85, 0x99, 0xd3, 0xe8, 0x5e, 0xcb\

));

g_Provider is a global variable created to represent the ETWprovider, where “Booster” is set as its friendly
name.

You will need to add the following #includes (these are common with user-mode):

#include <TraceLoggingProvider.h>

#include <evntrace.h>

In DriverEntry, call TraceLoggingRegister to register the provider:

TraceLoggingRegister(g_Provider);

Similarly, the provider should be deregistered in the unload routine like so:

TraceLoggingUnregister(g_Provider);

The logging is done with the TraceLoggingWritemacro that is provided a variable number of arguments
using another set of macros that provide convenient usage for typed properties. Here is an example of a
logging call in DriverEntry:

TraceLoggingWrite(g_Provider, "DriverEntry started", // provider, event name

TraceLoggingLevel(TRACE_LEVEL_INFORMATION), // log level

TraceLoggingValue("Booster Driver", "DriverName"), // value, name

TraceLoggingUnicodeString(RegistryPath, "RegistryPath")); // value, name

The above call means the following:

• Use the provider described by g_Provider.
• The event name is “DriverEntry started”.
• The logging level is Information (several levels are defined).
• A property named “DriverName” has the value “Boster Driver”.
• A property named “RegistryPath” has the value of the RegistryPath variable.

Notice the usage of the TraceLoggingValuemacro - it’s the most generic and uses the type inferred by the
first argument (the value). Many other type-safe macros exist, such as the TraceLoggingUnicodeString
macro above that ensures its first argument is indeed a UNICODE_STRING.

Here is another example - if symbolic link creation fails:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 126

TraceLoggingWrite(g_Provider, "Error",

TraceLoggingLevel(TRACE_LEVEL_ERROR),

TraceLoggingValue("Symbolic link creation failed", "Message"),

TraceLoggingNTStatus(status, "Status", "Returned status"));

You can use any “properties” you want. Try to provide the most important details for the event.

Here are a couple of more examples, taken from the Booster project part of the samples for this chapter:

// Create/Close dispatch IRP

TraceLoggingWrite(g_Provider, "Create/Close",

TraceLoggingLevel(TRACE_LEVEL_INFORMATION),

TraceLoggingValue(

IoGetCurrentIrpStackLocation(Irp)->MajorFunction == IRP_MJ_CREATE ?

"Create" : "Close", "Operation"));

// success in changing priority

TraceLoggingWrite(g_Provider, "Boosting",

TraceLoggingLevel(TRACE_LEVEL_INFORMATION),

TraceLoggingUInt32(data->ThreadId, "ThreadId"),

TraceLoggingInt32(oldPriority, "OldPriority"),

TraceLoggingInt32(data->Priority, "NewPriority"));

Viewing ETW Traces

Where do all the above traces go to? Normally, they are just dropped. Someone has to configure listening to
the provider and log the events to a real-time session or a file. The WDK provides a tool called TraceView
that can be used for just that purpose.

You can open a Developer’s Command window and run TraceView.exe directly. If you can’t locate it, it’s
installed by default in a directory such as C:\Program Files (x86)\Windows Kits\10\bin\10.0.22000.0\x64.

You can copy the executable to the target machine where the driver is supposed to run. When you run
TraceView.exe, an empty window is shown (figure 5-12).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 127

Figure 5-12: The TraceView.exe tool

Select the File / Create New log Session menu to create a new session. This opens up the dialog shown in
figure 5-13.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 128

Figure 5-13: New session dialog with a new provider

TraceView provides several methods of locating providers. We can add multiple providers to the same
session to get information from other components in the system. For now, we’ll add our provider by using
the Manually Entered Control GUID option, and type in our GUID (figure 5-14):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 129

Figure 5-14: Adding a provider GUID manually

Click OK. A dialog will pop up asking the source for decoding information. Use the default Auto option,
as trace logging does not require any outside source. You’ll see the single provider in the Create New Log
Session dialog. Click the Next button. The last step of the wizard allows you to select where the output
should go to: a real-time session (shown with TraceView), a file, or both (figure 5-15).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 130

Figure 5-15: Output selection for a session

Click Finish. Now you can load/use the driver normally. You should see the output generated in the main
TraceView window (figure 5-16).

Figure 5-16: ETW real-time session in action

You can see the various properties shown in the Message column. When logging to a file, you can open
the file later with TraceView and see what was logged.

There are other ways to use TraceView, and other tools to record and view ETW information. You could
also write your own tools to parse the ETW log, as the events have semantic information and so can easily

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 5: Debugging and Tracing 131

be analyzed.

Summary

In this chapter, we looked at the basics of debugging withWinDbg, as well as tracing activities within the
driver. Debugging is an essential skill to develop, as software of all kinds, including kernel drivers, may
have bugs.

In the next chapter, we’ll delve into some kernel mechanisms we need to get acquainted with, as these
come up frequently while developing and debugging drivers.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms
This chapter discusses various mechanisms theWindows kernel provides. Some of these are directly useful
for driver writers. Others are mechanisms that a driver developer needs to understand as it helps with
debugging and general understanding of activities in the system.

In this chapter:

• Interrupt Request Level
• Deferred Procedure Calls
• Asynchronous Procedure Calls
• Structured Exception Handling
• System Crash
• Thread Synchronization
• High IRQL Synchronization
• Work Items

Interrupt Request Level (IRQL)

In chapter 1, we discussed threads and thread priorities. These priorities are taken into consideration when
more threads want to execute than there are available processors. At the same time, hardware devices
need to notify the system that something requires attention. A simple example is an I/O operation that is
carried out by a disk drive. Once the operation completes, the disk drive notifies completion by requesting
an interrupt. This interrupt is connected to an Interrupt Controller hardware that then sends the request
to a processor for handling. The next question is, which thread should execute the associated Interrupt
Service Routine (ISR)?

Every hardware interrupt is associated with a priority, called Interrupt Request Level (IRQL) (not to be
confused with an interrupt physical line known as IRQ), determined by the HAL. Each processor’s context
has its own IRQL, just like any register. IRQLs may or may not be implemented by the CPU hardware, but
this is essentially unimportant. IRQL should be treated just like any other CPU register.

The basic rule is that a processor executes the code with the highest IRQL. For example, if a CPU’s IRQL is
zero at some point, and an interrupt with an associated IRQL of 5 comes in, it will save its state (context) in
the current thread’s kernel stack, raise its IRQL to 5 and then execute the ISR associated with the interrupt.
Once the ISR completes, the IRQL will drop to its previous level, resuming the previously executed code
as though the interrupt never happened. While the ISR is executing, other interrupts coming in with an

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 133

IRQL of 5 or less cannot interrupt this processor. If, on the other hand, the IRQL of the new interrupt is
above 5, the CPU will save its state again, raise IRQL to the new level, execute the second ISR associated
with the second interrupt and when completed, will drop back to IRQL 5, restore its state and continue
executing the original ISR. Essentially, raising IRQL blocks code with equal or lower IRQL temporarily.
The basic sequence of events when an interrupt occurs is depicted in figure 6-1. Figure 6-2 shows what
interrupt nesting looks like.

Figure 6-1: Basic interrupt dispatching

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 134

Figure 6-2: Nested interrupts

An important fact for the depicted scenarios in figures 6-1 and 6-2 is that execution of all ISRs is done
by the same thread - which got interrupted in the first place. Windows does not have a special thread
to handle interrupts; they are handled by whatever thread was running at that time on the interrupted
processor. As we’ll soon discover, context switching is not possible when the IRQL of the processor is 2 or
higher, so there is no way another thread can sneak in while these ISRs execute.

The interrupted thread does not get its quantum reduced because of these “interruptions”. It’s not its
fault, so to speak.

When user-mode code is executing, the IRQL is always zero. This is one reason why the term IRQL is not
mentioned in any user-mode documentation - it’s always zero and cannot be changed. Most kernel-mode
code runs with IRQL zero as well. It’s possible, however, in kernel mode, to raise the IRQL on the current
processor.

The important IRQLs are described below:

• PASSIVE_LEVEL in WDK (0) - this is the “normal” IRQL for a CPU. User-mode code always runs at
this level. Thread scheduling working normally, as described in chapter 1.

• APC_LEVEL (1) - used for special kernel APCs (Asynchronous Procedure Calls will be discussed later
in this chapter). Thread scheduling works normally.

• DISPATCH_LEVEL (2) - this is where things change radically. The scheduler cannot wake up on this
CPU. Paged memory access is not allowed - such access causes a system crash. Since the scheduler
cannot interfere, waiting on kernel objects is not allowed (causes a system crash if used).

• Device IRQL - a range of levels used for hardware interrupts (3 to 11 on x64/ARM/ARM64, 3 to 26
on x86). All rules from IRQL 2 apply here as well.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 135

• Highest level (HIGH_LEVEL) - this is the highest IRQL, masking all interrupts. Used by some APIs
dealing with linked list manipulation. The actual values are 15 (x64/ARM/ARM64) and 31 (x86).

When a processor’s IRQL is raised to 2 or higher (for whatever reason), certain restrictions apply on the
executing code:

• Accessing memory not in physical memory is fatal and causes a system crash. This means accessing
data from non-paged pool is always safe, whereas accessing data from paged pool or from user-
supplied buffers is not safe and should be avoided.

• Waiting on any kernel object (e.g. mutex or event) causes a system crash, unless the wait timeout is
zero, which is still allowed. (we’ll discuss dispatcher object and waiting later in this chapter in the
Thread Synchronization section.)

These restrictions are due to the fact that the scheduler “runs” at IRQL 2; so if a processor’s IRQL is already
2 or higher, the scheduler cannot wake up on that processor, so context switches (replacing the running
thread with another on this CPU) cannot occur. Only higher level interrupts can temporarily divert code
into an associated ISR, but it’s still the same thread - no context switch can occur; the thread’s context is
saved, the ISR executes and the thread’s state resumes.

The current IRQL of a processor can be viewed while debugging with the !irql command. An
optional CPU number can be specified, which shows the IRQL of that CPU.

You can view the registered interrupts on a system using the !idt debugger command.

Raising and Lowering IRQL

As previously discussed, in user mode the concept of IRQL is not mentioned and there is no way to
change it. In kernel mode, the IRQL can be raised with the KeRaiseIrql function and lowered back with
KeLowerIrql. Here is a code snippet that raises the IRQL to DISPATCH_LEVEL (2), and then lowers it back
after executing some instructions at this IRQL.

// assuming current IRQL <= DISPATCH_LEVEL

KIRQL oldIrql; // typedefed as UCHAR

KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);

NT_ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);

// do work at IRQL DISPATCH_LEVEL

KeLowerIrql(oldIrql);

If you raise IRQL, make sure you lower it in the same function. It’s too dangerous to return
from a function with a higher IRQL than it was entered. Also, make sure KeRaiseIrql actually
raises the IRQL and KeLowerIrql actually lowers it; otherwise, a system crash will follow.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 136

Thread Priorities vs. IRQLs

IRQL is an attribute of a processor. Priority is an attribute of a thread.
Thread priorities only have meaning at IRQL < 2. Once an executing thread raised IRQL to 2 or higher,
its priority does not mean anything anymore - it has theoretically an infinite quantum - it will continue
execution until it lowers the IRQL to below 2.

Naturally, spending a lot of time at IRQL >= 2 is not a good thing; user mode code is not running for sure.
This is just one reason there are severe restrictions on what executing code can do at these levels.

Task Manager shows the amount of CPU time spent in IRQL 2 or higher using a pseudo-process called
System Interrupts; Process Explorer calls it Interrupts. Figure 6-3 shows a screenshot from Task Manager
and figure 6-4 shows the same information in Process Explorer.

Figure 6-3: IRQL 2+ CPU time in Task Manager

Figure 6-4: IRQL 2+ CPU time in Process Explorer

Deferred Procedure Calls

Figure 6-5 shows a typical sequence of events when a client invokes some I/O operation. In this figure,
a user mode thread opens a handle to a file, and issues a read operation using the ReadFile function.
Since the thread can make an asynchronous call, it regains control almost immediately and can do other
work. The driver receiving this request, calls the file system driver (e.g. NTFS), which may call other
drivers below it, until the request reaches the disk driver, which initiates the operation on the actual disk
hardware. At that point, no code needs to execute, since the hardware “does its thing”.

When the hardware is done with the read operation, it issues an interrupt. This causes the Interrupt Service
Routine associated with the interrupt to execute at Device IRQL (note that the thread handling the request
is arbitrary, since the interrupt arrives asynchronously). A typical ISR accesses the device’s hardware to
get the result of the operation. Its final act should be to complete the initial request.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 137

Figure 6-5: Typical I/O request processing (part 1)

As we’ve seen in chapter 4, completing a request is done by calling IoCompleteRequest. The problem
is that the documentation states this function can only be called at IRQL <= DISPATCH_LEVEL (2). This
means the ISR cannot call IoCompleteRequest or it will crash the system. So what is the ISR to do?

You may wonder why is there such a restriction. One of the reasons has to do with the work
done by IoCompleteRequest. We’ll discuss this in more detail in the next chapter, but the
bottom line is that this function is relatively expensive. If the call would have been allowed,
that would mean the ISR will take substantially longer to execute, and since it executes in a
high IRQL, it will mask off other interrupts for a longer period of time.

The mechanism that allows the ISR to call IoCompleteRequest (and other functions with similar limi-
tations) as soon as possible is using a Deferred Procedure Call (DPC). A DPC is an object encapsulating
a function that is to be called at IRQL DISPATCH_LEVEL. At this IRQL, calling IoCompleteRequest is
permitted.

You may wonder why does the ISR not simply lower the current IRQL to DISPATCH_LEVEL,
call IoCompleteRequest, and then raise the IRQL back to its original value. This can cause a
deadlock. We’ll discuss the reason for that later in this chapter in the section Spin Locks.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 138

The driver which registered the ISR prepares a DPC in advance, by allocating a KDPC structure from non-
paged pool and initializing it with a callback function using KeInitializeDpc. Then, when the ISR is
called, just before exiting the function, the ISR requests the DPC to execute as soon as possible by queuing
it using KeInsertQueueDpc. When the DPC function executes, it calls IoCompleteRequest. So the DPC
serves as a compromise - it’s running at IRQL DISPATCH_LEVEL, meaning no scheduling can occur, no
paged memory access, etc. but it’s not high enough to prevent hardware interrupts from coming in and
being served on the same processor.

Every processor on the system has its own queue of DPCs. By default, KeInsertQueueDpc queues the
DPC to the current processor’s DPC queue. When the ISR returns, before the IRQL can drop back to zero,
a check is made to see whether DPCs exist in the processor’s queue. If there are, the processor drops to
IRQL DISPATCH_LEVEL (2) and then processes the DPCs in the queue in a First In First Out (FIFO) manner,
calling the respective functions, until the queue is empty. Only then can the processor’s IRQL drop to zero,
and resume executing the original code that was disturbed at the time the interrupt arrived.

DPCs can be customized in some ways. Check out the docs for the functions
KeSetImportantceDpc and KeSetTargetProcessorDpc.

Figure 6-6 augments figure 6-5 with the DPC routine execution.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 139

Figure 6-6: Typical I/O request processing (part 2)

Using DPC with a Timer

DPCs were originally created for use by ISRs. However, there are other mechanisms in the kernel that
utilize DPCs.

One such use is with a kernel timer. A kernel timer, represented by the KTIMER structure allows setting
up a timer to expire some time in the future, based on a relative interval or absolute time. This timer
is a dispatcher object and so can be waited upon with KeWaitForSingleObject (discussed later in this
chapter in the section “Synchronization”). Although waiting is possible, it’s inconvenient for a timer. A
simpler approach is to call some callback when the timer expires. This is exactly what the kernel timer
provides using a DPC as its callback.

The following code snippet shows how to configure a timer and associate it with a DPC. When the timer
expires, the DPC is inserted into a CPU’s DPC queue and so executes as soon as possible. Using a DPC is

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 140

more powerful than a zero IRQL based callback, since it is guaranteed to execute before any user mode
code (and most kernel mode code).

KTIMER Timer;

KDPC TimerDpc;

void InitializeAndStartTimer(ULONG msec) {

KeInitializeTimer(&Timer);

KeInitializeDpc(&TimerDpc,

OnTimerExpired, // callback function

nullptr); // passed to callback as "context"

// relative interval is in 100nsec units (and must be negative)

// convert to msec by multiplying by 10000

LARGE_INTEGER interval;

interval.QuadPart = -10000LL * msec;

KeSetTimer(&Timer, interval, &TimerDpc);

}

void OnTimerExpired(KDPC* Dpc, PVOID context, PVOID, PVOID) {

UNREFERENCED_PARAMETER(Dpc);

UNREFERENCED_PARAMETER(context);

NT_ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);

// handle timer expiration

}

Asynchronous Procedure Calls

We’ve seen in the previous section that DPCs are objects encapsulating a function to be called at IRQL
DISPATCH_LEVEL. The calling thread does not matter, as far as DPCs are concerned.

Asynchronous Procedure Calls (APCs) are also data structures that encapsulate a function to be called. But
contrary to a DPC, an APC is targeted towards a particular thread, so only that thread can execute the
function. This means each thread has an APC queue associated with it.

There are three types of APCs:

• User mode APCs - these execute in user mode at IRQL PASSIVE_LEVEL only when the thread
goes into alertable state. This is typically accomplished by calling an API such as SleepEx,
WaitForSingleObjectEx, WaitForMultipleObjectsEx and similar APIs. The last argument to
these functions can be set to TRUE to put the thread in alertable state. In this state it looks at its APC
queue, and if not empty - the APCs now execute until the queue is empty.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 141

• Normal kernel-mode APCs - these execute in kernel mode at IRQL PASSIVE_LEVEL and preempt
user-mode code (and user-mode APCs).

• Special kernel APCs - these execute in kernel mode at IRQL APC_LEVEL (1) and preempt user-mode
code, normal kernel APCs, and user-mode APCs. These APCs are used by the I/O manager to
complete I/O operations as will be discussed in the next chapter.

The APC API is undocumented in kernel mode (but has been reversed engineered enough to allow usage
if desired).

User-mode can use (user mode) APCs by calling certain APIs. For example, calling ReadFileEx
or WriteFileEx start an asynchronous I/O operation. When the operation completes, a user-
mode APC is attached to the calling thread. This APC will execute when the thread enters an
alertable state as described earlier. Another useful function in user mode to explicitly generate
an APC is QueueUserAPC. Check out the Windows API documentation for more information.

Critical Regions and Guarded Regions

A Critical Region prevents user mode and normal kernel APCs from executing (special kernel APCs
can still execute). A thread enters a critical region with KeEnterCriticalRegion and leaves it with
KeLeaveCriticalRegion. Some functions in the kernel require being inside a critical region, especially
when working with executive resources (see the section “Executive Resources” later in this chapter).

A Guarded Region prevents all APCs from executing. Call KeEnterGuardedRegion to enter a guarded re-
gion and KeLeaveGuardedRegion to leave it. Recursive calls to KeEnterGuardedRegionmust be matched
with the same number of calls to KeLeaveGuardedRegion.

Raising the IRQL to APC_LEVEL disables delivery of all APCs.

Write RAII wrappers for entering/leaving critical and guarded regions.

Structured Exception Handling

An exception is an event that occurs because of a certain instruction that did something that caused the
processor to raise an error. Exceptions are in some ways similar to interrupts, the main difference being
that an exception is synchronous and technically reproducible under the same conditions, whereas an
interrupt is asynchronous and can arrive at any time. Examples of exceptions include division by zero,
breakpoint, page fault, stack overflow and invalid instruction.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 142

If an exception occurs, the kernel catches this and allows code to handle the exception, if possible. This
mechanism is called Structured Exception Handling (SEH) and is available for user-mode code as well as
kernel-mode code.

The kernel exception handlers are called based on the Interrupt Dispatch Table (IDT), the same one holding
mapping between interrupt vectors and ISRs. Using a kernel debugger, the !idt command shows all these
mappings. The low numbered interrupt vectors are in fact exception handlers. Here’s a sample output from
this command:

lkd> !idt

Dumping IDT: fffff8011d941000

00: fffff8011dd6c100 nt!KiDivideErrorFaultShadow

01: fffff8011dd6c180 nt!KiDebugTrapOrFaultShadow Stack = 0xFFFFF8011D9459D0

02: fffff8011dd6c200 nt!KiNmiInterruptShadow Stack = 0xFFFFF8011D9457D0

03: fffff8011dd6c280 nt!KiBreakpointTrapShadow

04: fffff8011dd6c300 nt!KiOverflowTrapShadow

05: fffff8011dd6c380 nt!KiBoundFaultShadow

06: fffff8011dd6c400 nt!KiInvalidOpcodeFaultShadow

07: fffff8011dd6c480 nt!KiNpxNotAvailableFaultShadow

08: fffff8011dd6c500 nt!KiDoubleFaultAbortShadow Stack = 0xFFFFF8011D9453D0

09: fffff8011dd6c580 nt!KiNpxSegmentOverrunAbortShadow

0a: fffff8011dd6c600 nt!KiInvalidTssFaultShadow

0b: fffff8011dd6c680 nt!KiSegmentNotPresentFaultShadow

0c: fffff8011dd6c700 nt!KiStackFaultShadow

0d: fffff8011dd6c780 nt!KiGeneralProtectionFaultShadow

0e: fffff8011dd6c800 nt!KiPageFaultShadow

10: fffff8011dd6c880 nt!KiFloatingErrorFaultShadow

11: fffff8011dd6c900 nt!KiAlignmentFaultShadow

(truncated)

Note the function names - most are very descriptive. These entries are connected to Intel/AMD (in this
example) faults. Some common examples of exceptions include:

• Division by zero (0)
• Breakpoint (3) - the kernel handles this transparently, passing control to an attached debugger (if
any).

• Invalid opcode (6) - this fault is raised by the CPU if it encounters an unknown instruction.
• Page fault (14) - this fault is raised by the CPU if the page table entry used for translating virtual to
physical addresses has the Valid bit set to zero, indicating (as far as the CPU is concerned) that the
page is not resident in physical memory.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 143

Some other exceptions are raised by the kernel as a result of a previous CPU fault. For example, if a page
fault is raised, the Memory Manager’s page fault handler will try to locate the page that is not resident in
RAM. If the page happens not to exist at all, the Memory Manager will raise an Access Violation exception.

Once an exception is raised, the kernel searches the function where the exception occurred for a handler
(except for some exceptions which it handles transparently, such as Breakpoint (3)). If not found, it will
search up the call stack, until such handler is found. If the call stack is exhausted, the system will crash.

How can a driver handle these types of exceptions? Microsoft added four keywords to the C language to
allow developers to handle such exceptions, as well as have code execute no matter what. Table 6-1 shows
the added keywords with a brief description.

Table 6-1: Keywords for working with SEH

Keyword Description

__try Starts a block of code where exceptions may occur.

__except Indicates if an exception is handled, and provides the handling code if it is.

__finally Unrelated to exceptions directly. Provides code that is guaranteed to execute no matter what -
whether the __try block is exited normally, with a return statement, or because of an exception.

__leave Provides an optimized mechanism to jump to the __finally block from somewhere within a
__try block.

The valid combination of keywords is __try/__except and __try/__finally. However, these can be
combined by using nesting to any level.

These same keywords work in user mode as well, in much the same way.

Using __try/__except

In chapter 4, we implemented a driver that accesses a user-mode buffer to get data needed for the driver’s
operation. We used a direct pointer to the user’s buffer. However, this is not guaranteed to be safe. For
example, the user-mode code (say from another thread) could free the buffer, just before the driver accesses
it. In such a case, the driver would cause a system crash, essentially because of a user’s error (or malicious
intent). Since user data should never be trusted, such access should be wrapped in a __try/__except block
to make sure a bad buffer does not crash the driver.

Here is the important part of a revised IRP_MJ_WRITE handler using an exception handler:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 144

do {

if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

auto data = (ThreadData*)Irp->UserBuffer;

if (data == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;

}

__try {

if (data->Priority < 1 || data->Priority > 31) {

status = STATUS_INVALID_PARAMETER;

break;

}

PETHREAD Thread;

status = PsLookupThreadByThreadId(

ULongToHandle(data->ThreadId), &Thread);

if (!NT_SUCCESS(status))

break;

KeSetPriorityThread((PKTHREAD)Thread, data->Priority);

ObDereferenceObject(Thread);

KdPrint(("Thread Priority change for %d to %d succeeded!\n",

data->ThreadId, data->Priority));

break;

}

__except (EXCEPTION_EXECUTE_HANDLER) {

// probably something wrong with the buffer

status = STATUS_ACCESS_VIOLATION;

}

} while(false);

Placing EXCEPTION_EXECUTE_HANDLER in __except says that any exception is to be handled. We can be
more selective by calling GetExceptionCode and looking at the actual exception. If we don’t expect this,
we can tell the kernel to continue looking for handlers up the call stack:

__except (GetExceptionCode() == STATUS_ACCESS_VIOLATION

? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {

// handle exception

}

Does all this mean that the driver can catch any and all exceptions? If so, the driver will never cause a
system crash. Fortunately (or unfortunately, depending on your perspective), this is not the case. Access

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 145

violation, for example, is something that can only be caught if the violated address is in user space. If it’s
in kernel space, it cannot be caught and still cause a system crash. This makes sense, since something bad
has happened and the kernel will not let the driver get away with it. User mode addresses, on the other
hand, are not at the control of the driver, so such exceptions can be caught and handled.

The SEH mechanism can also be used by drivers (and user-mode code) to raise custom exceptions. The
kernel provides the generic function ExRaiseStatus to raise any exception and some specific functions
like ExRaiseAccessViolation:

void ExRaiseStatus(NTSTATUS Status);

A driver can also crash the system explicitly if it concludes that something really bad going on, such as
data being corrupted from underneath the driver. The kernel provides the KeBugCheckEx for this purpose:

VOID KeBugCheckEx(

In ULONG BugCheckCode,

In ULONG_PTR BugCheckParameter1,

In ULONG_PTR BugCheckParameter2,

In ULONG_PTR BugCheckParameter3,

In ULONG_PTR BugCheckParameter4);

KeBugCheckEx is the normal kernel function that generates a crash. BugCheckCode is the crash code to be
reported, and the other 4 numbers can provide more details about the crash. If the bugcheck code is one
of those documented by Microsoft, the meaning of the other 4 numbers must be provided as documented.
(See the next section System Crash for more details).

Using __try/__finally

Using a block of __try and __finally is not directly related to exceptions. This is about making sure
some piece of code executes no matter what - whether the code exits cleanly or mid-way because of an
exception. This is similar in concept to the finally keyword popular in some high level languages (e.g.
Java, C#). Here is a simple example to show the problem:

void foo() {

void* p = ExAllocatePoolWithTag(PagedPool, 1024, DRIVER_TAG);

if(p == nullptr)

return;

// do something with p

ExFreePool(p);

}

The above code seems harmless enough. However, there are several issues with it:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 146

• If an exception is thrown between the allocation and the release, a handler in the caller will be
searched, but the memory will not be freed.

• If a return statement is used in some conditional between the allocation and release, the buffer will
not be freed. This requires the code to be careful to make sure all exit points from the function pass
through the code freeing the buffer.

The second bullet can be implemented with careful coding, but is a burden best avoided. The first bullet
cannot be handled with standard coding techniques. This is where __try/__finally come in. Using this
combination, we can make sure the buffer is freed no matter what happens in the __try block:

void foo() {

void* p = ExAllocatePoolWithTag(PagedPool, 1024, DRIVER_TAG);

if(p == nullptr)

return;

__try {

// do something with p

}

__finally {

// called no matter what

ExFreePool(p);

}

}

With the above code in place, even if return statements appear within the __try body, the __finally
code will be called before actually returning from the function. If some exception occurs, the __finally
block runs first before the kernel searches up the call stack for possible handlers.

__try/__finally is useful not just with memory allocations, but also with other resources, where some
acquisition and release need to take place. One common example is when synchronizing threads accessing
some shared data. Here is an example of acquiring and releasing a fast mutex (fast mutex and other
synchronization primitives are described later in this chapter):

FAST_MUTEX MyMutex;

void foo() {

ExAcquireFastMutex(&MyMutex);

__try {

// do work while the fast mutex is held

}

__finally {

ExReleaseFastMutex(&MyMutex);

}

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 147

Using C++ RAII Instead of __try / __finally

Although the preceding examples with __try/__finally work, they are not terribly convenient. Using
C++ we can build RAII wrappers that do the right thing without the need to use __try/__finally. C++
does not have a finally keyword like C# or Java, but it doesn’t need one - it has destructors.

Here is a very simple, bare minimum, example that manages a buffer allocation with a RAII class:

template<typename T = void>

struct kunique_ptr {

explicit kunique_ptr(T* p = nullptr) : _p(p) {}

~kunique_ptr() {

if (_p)

ExFreePool(_p);

}

T* operator->() const {

return _p;

}

T& operator*() const {

return *_p;

}

private:

T* _p;

};

The class uses templates to allow working easily with any type of data. An example usage follows:

struct MyData {

ULONG Data1;

HANDLE Data2;

};

void foo() {

// take charge of the allocation

kunique_ptr<MyData> data((MyData*)ExAllocatePool(PagedPool, sizeof(MyData))\

);

// use the pointer

data->Data1 = 10;

// when the object goes out of scope, the destructor frees the buffer

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 148

If you don’t normally use C++ as your primary programming language, you may find the above code
confusing. You can continue working with __try/__finally, but I recommend getting acquainted with
this type of code. In any case, even if you struggle with the implementation of kunique_ptr above, you
can still use it without needing to understand every little detail.

The kunique_ptr type presented above is a bare minimum. You should also remove the copy constructor
and copy assignment, and allow move copy and assignment (C++ 11 and later, for ownership transfer).
Here is a more complete implementation:

template<typename T = void>

struct kunique_ptr {

explicit kunique_ptr(T* p = nullptr) : _p(p) {}

// remove copy ctor and copy = (single owner)

kunique_ptr(const kunique_ptr&) = delete;

kunique_ptr& operator=(const kunique_ptr&) = delete;

// allow ownership transfer

kunique_ptr(kunique_ptr&& other) : _p(other._p) {

other._p = nullptr;

}

kunique_ptr& operator=(kunique_ptr&& other) {

if (&other != this) {

Release();

_p = other._p;

other._p = nullptr;

}

return *this;

}

~kunique_ptr() {

Release();

}

operator bool() const {

return _p != nullptr;

}

T* operator->() const {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 149

return _p;

}

T& operator*() const {

return *_p;

}

void Release() {

if (_p)

ExFreePool(_p);

}

private:

T* _p;

};

We’ll build other RAII wrappers for synchronization primitives later in this chapter.

Using C++ RAII wrappers has one missing piece - if an exception occurs, the destructor will not
be called, so a leak of some sort occurs. The reason this does not work (as it does in user-mode),
is the lack of a C++ runtime and the current inability of the compiler to set up elaborate code
with __try/__finally to mimic this effect. Even so, it’s still very useful, as in many cases
exceptions are not expected, and even if they are, no handler exists in the driver for that and
the system should probably crash anyway.

System Crash

As we already know, if an unhandled exception occurs in kernel mode, the system crashes, typically with
the “Blue Screen of Death” (BSOD) showing its face (on Windows 8+, that’s literally a face - saddy or
frowny - the inverse of smiley). In this section, we’ll discuss what happens when the system crashes and
how to deal with it.

The system crash has many names, all meaning the same thing - “Blue screen of Death”, “System failure”,
“Bugcheck”, “Stop error”. The BSOD is not some punishment, as may seem at first, but a protection
mechanism. If kernel code, which is supposed to be trusted, did something bad, stopping everything
is probably the safest approach, as perhaps letting the code continue roaming around may result in an
unbootable system if some important files or Registry data is corrupted.

Recent versions of Windows 10 have some alternate colors for when the system crashes. Green is used
for insider preview builds, and I actually encountered a pink as well (power-related errors).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 150

If the crashed system is connected to a kernel debugger, the debugger will break. This allows examining
the state of the system before other actions take place.

The system can be configured to perform some operations if the system crashes. This can be done with the
System Properties UI on the Advanced tab. Clicking Settings… at the Startup and Recovery section brings
the Startup and Recovery dialog where the System Failure section shows the available options. Figure 6-7
shows these two dialogs.

Figure 6-7: Startup and recovery settings

If the system crashes, an event entry can be written to the event log. It’s checked by default, and there is
no good reason to change it. The system is configured to automatically restart; this has been the default
since Windows 2000.

The most important setting is the generation of a dump file. The dump file captures the system state at the
time of the crash, so it can later be analyzed by loading the dump file into the debugger. The type of the
dump file is important since it determines what information will be present in the dump. The dump is not
written to the target file at crash time, but instead written to the first page file.
Only when the system restarts, the kernel notices there is dump information in the page file, and it copies
the data to the target file. The reason has to do with the fact that at system crash time it may be too
dangerous to write something to a new file (or overwrite an existing file); the I/O systemmay not be stable
enough. The best bet is to write the data to a page file, which is already open anyway. The downside is that
the page file must be large enough to contain the dump, otherwise the dump file will not be generated.

The dump file contains physical memory only.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 151

The dump type determines what data would be written and hints at the page file size that may be required.
Here are the options:

• Small memory dump (256 KB on Windows 8 and later, 64 KB on older systems) - a very minimal
dump, containing basic system information and information on the thread that caused the crash.
Usually this is too little to determine what happened in all but the most trivial cases. The upside is
that the file is small, so it can be easily moved.

• Kernel memory dump - this is the default on Windows 7 and earlier versions. This setting captures
all kernel memory but no user memory. This is usually good enough, since a system crash can only
be caused by kernel code misbehaving. It’s extremely unlikely that user-mode had anything to do
with it.

• Complete memory dump - this provides a dump of all physical memory, user memory and kernel
memory. This is the most complete information available. The downside is the size of the dump,
which could be gigantic depending on the size of RAM (the total size of the final file). The obvious
optimization is not to include unused pages, but Complete Memory Dump does not do that.

• Automatic memory dump (Windows 8+) - this is the default on Windows 8 and later. This is the
same as kernel memory dump, but the kernel resizes the page file on boot to a size that guarantees
with high probability that the page file size would be large enough to contain a kernel dump. This
is only done if the page file size is specified as “System managed” (the default).

• Active memory dump (Windows 10+) - this is similar to a complete memory dump, with two excep-
tions. First, unused pages are not written. Second, if the crashed system is hosting guest virtual
machines, the memory they were using at the time is not captured (as it’s unlikely these have
anything to do with the host crashing). These optimizations help in reducing the dump file size.

Crash Dump Information

Once you have a crash dump in hand, you can open it in WinDbg by selecting File/Open Dump File and
navigating to the file. The debugger will spew some basic information similar to the following:

Microsoft (R) Windows Debugger Version 10.0.18317.1001 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]

Kernel Bitmap Dump File: Kernel address space is available, User address space \

may not be available.

************* Path validation summary **************

Response Time (ms) Location

Deferred SRV*c:\Symbols*http://msdl.micro\

soft.com/download/symbols

Symbol search path is: SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

Windows 10 Kernel Version 18362 MP (4 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 152

Built by: 18362.1.amd64fre.19h1_release.190318-1202

Machine Name:

Kernel base = 0xfffff803`70abc000 PsLoadedModuleList = 0xfffff803`70eff2d0

Debug session time: Wed Apr 24 15:36:55.613 2019 (UTC + 3:00)

System Uptime: 0 days 0:05:38.923

Loading Kernel Symbols

....................................Page 2001b5efc too large to be in the dump \

file.

Page 20001ebfb too large to be in the dump file.

...............................

Loading User Symbols

PEB is paged out (Peb.Ldr = 00000054`34256018). Type ".hh dbgerr001" for detai\

ls

Loading unloaded module list

.............

For analysis of this file, run !analyze -v

nt!KeBugCheckEx:

fffff803`70c78810 48894c2408 mov qword ptr [rsp+8],rcx ss:fffff988`53b\

0f6b0=000000000000000a

The debugger suggests running !analyze -v and it’s the most common thing to do at the start of dump
analysis. Notice the call stack is at KeBugCheckEx, which is the function generating the bugcheck.

The default logic behind !analyze -v performs basic analysis on the thread that caused the crash and
shows a few pieces of information related to the crash dump code:

2: kd> !analyze -v

* *

* Bugcheck Analysis *

* *

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Arg1: ffffd907b0dc7660, memory referenced

Arg2: 0000000000000002, IRQL

Arg3: 0000000000000000, value 0 = read operation, 1 = write operation

Arg4: fffff80375261530, address which referenced memory

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 153

Debugging Details:

(truncated)

DUMP_TYPE: 1

BUGCHECK_P1: ffffd907b0dc7660

BUGCHECK_P2: 2

BUGCHECK_P3: 0

BUGCHECK_P4: fffff80375261530

READ_ADDRESS: Unable to get offset of nt!_MI_VISIBLE_STATE.SpecialPool

Unable to get value of nt!_MI_VISIBLE_STATE.SessionSpecialPool

ffffd907b0dc7660 Paged pool

CURRENT_IRQL: 2

FAULTING_IP:

myfault+1530

fffff803`75261530 8b03 mov eax,dword ptr [rbx]

(truncated)

ANALYSIS_VERSION: 10.0.18317.1001 amd64fre

TRAP_FRAME: fffff98853b0f7f0 -- (.trap 0xfffff98853b0f7f0)

NOTE: The trap frame does not contain all registers.

Some register values may be zeroed or incorrect.

rax=0000000000000000 rbx=0000000000000000 rcx=ffffd90797400340

rdx=0000000000000880 rsi=0000000000000000 rdi=0000000000000000

rip=fffff80375261530 rsp=fffff98853b0f980 rbp=0000000000000002

r8=ffffd9079c5cec10 r9=0000000000000000 r10=ffffd907974002c0

r11=ffffd907b0dc1650 r12=0000000000000000 r13=0000000000000000

r14=0000000000000000 r15=0000000000000000

iopl=0 nv up ei ng nz na po nc

myfault+0x1530:

fffff803`75261530 8b03 mov eax,dword ptr [rbx] ds:00000000`00000\

000=????????

Resetting default scope

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 154

LAST_CONTROL_TRANSFER: from fffff80370c8a469 to fffff80370c78810

STACK_TEXT:

fffff988`53b0f6a8 fffff803`70c8a469 : 00000000`0000000a ffffd907`b0dc7660 00000\

000`00000002 00000000`00000000 : nt!KeBugCheckEx

fffff988`53b0f6b0 fffff803`70c867a5 : ffff8788`e4604080 ffffff4c`c66c7010 00000\

000`00000003 00000000`00000880 : nt!KiBugCheckDispatch+0x69

fffff988`53b0f7f0 fffff803`75261530 : ffffff4c`c66c7000 00000000`00000000 fffff\

988`53b0f9e0 00000000`00000000 : nt!KiPageFault+0x465

fffff988`53b0f980 fffff803`75261e2d : fffff988`00000000 00000000`00000000 ffff8\

788`ec7cf520 00000000`00000000 : myfault+0x1530

fffff988`53b0f9b0 fffff803`75261f88 : ffffff4c`c66c7010 00000000`000000f0 00000\

000`00000001 ffffff30`21ea80aa : myfault+0x1e2d

fffff988`53b0fb00 fffff803`70ae3da9 : ffff8788`e6d8e400 00000000`00000001 00000\

000`83360018 00000000`00000001 : myfault+0x1f88

fffff988`53b0fb40 fffff803`710d1dd5 : fffff988`53b0fec0 ffff8788`e6d8e400 00000\

000`00000001 ffff8788`ecdb6690 : nt!IofCallDriver+0x59

fffff988`53b0fb80 fffff803`710d172a : ffff8788`00000000 00000000`83360018 00000\

000`00000000 fffff988`53b0fec0 : nt!IopSynchronousServiceTail+0x1a5

fffff988`53b0fc20 fffff803`710d1146 : 00000054`344feb28 00000000`00000000 00000\

000`00000000 00000000`00000000 : nt!IopXxxControlFile+0x5ca

fffff988`53b0fd60 fffff803`70c89e95 : ffff8788`e4604080 fffff988`53b0fec0 00000\

054`344feb28 fffff988`569fd630 : nt!NtDeviceIoControlFile+0x56

fffff988`53b0fdd0 00007ff8`ba39c147 : 00000000`00000000 00000000`00000000 00000\

000`00000000 00000000`00000000 : nt!KiSystemServiceCopyEnd+0x25

00000054`344feb48 00000000`00000000 : 00000000`00000000 00000000`00000000 00000\

000`00000000 00000000`00000000 : 0x00007ff8`ba39c147

(truncated)

FOLLOWUP_IP:

myfault+1530

fffff803`75261530 8b03 mov eax,dword ptr [rbx]

FAULT_INSTR_CODE: 8d48038b

SYMBOL_STACK_INDEX: 3

SYMBOL_NAME: myfault+1530

FOLLOWUP_NAME: MachineOwner

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 155

MODULE_NAME: myfault

IMAGE_NAME: myfault.sys

(truncated)

Every crash dump code can have up to 4 numbers that provide more information about the crash. In this
case, we can see the code is DRIVER_IRQL_NOT_LESS_OR_EQUAL (0xd1) and the next four numbers named
Arg1 through Arg4 mean (in order): memory referenced, the IRQL at the time of the call, read vs. write
operation and the accessing address.

The command clearly recognizesmyfault.sys as the faulting module (driver). That’s because this is an easy
crash - the culprit is on the call stack as can be seen in the STACK TEXT section above (you can also simply
use the k command to see it again).

The !analyze -v command is extensible and it’s possible to add more analysis to that
command using an extension DLL. Youmay be able to find such extensions on the web. Consult
the debugger API documentation for more information on how to add your own analysis code
to this command.

More complex crash dumps may show calls from the kernel only on the call stack of the offending thread.
Before you conclude that you found a bug in the Windows kernel, consider this more likely scenario: A
driver did something that was not fatal in itself, such as experience a buffer overflow - wrote data beyond
its allocated buffer, but unfortunately ,the memory following that buffer was allocated by some other
driver or the kernel, and so nothing bad happened at that time. Some time later, the kernel accessed that
memory and got bad data and caused a system crash. But the faulting driver is nowhere to be found on
any call stack; this is much harder to diagnose.

One way to help diagnose such issues is using Driver Verifier. We’ll look at the basics of Driver
Verifier in module 12.

Once you get the crash dump code, it’s helpful to look in the debugger documentation at the
topic “Bugcheck Code Reference”, where common bugcheck codes are explained more fully
with typical causes and ideas on what to investigate next.

Analyzing a Dump File

A dump file is a snapshot of a system’s memory. Other than that, it’s the same as any other kernel
debugging session. You just can’t set breakpoints, and certainly cannot use any go command. All other
commands are available as usual. Commands such as !process, !thread, lm, k can be used normally.
Here are some other commands and tips:

• The prompt indicates the current processor. Switching processors can be done with the command
∼ns where n is the CPU index (it looks like switching threads in user mode).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 156

• The !running command can be used to list the threads that were running on all processors at the
time of the crash. Adding -t as an option shows the call stack for each thread. Here is an example
with the above crash dump:

2: kd> !running -t

System Processors: (000000000000000f)

Idle Processors: (0000000000000002)

Prcbs Current (pri) Next (pri) Idle

0 fffff8036ef3f180 ffff8788e91cf080 (8) fffff80371\

048400

Child-SP RetAddr Call Site

00 00000094`ed6ee8a0 00000000`00000000 0x00007ff8`b74c4b57

2 ffffb000c1944180 ffff8788e4604080 (12) ffffb000c1\

955140

Child-SP RetAddr Call Site

00 fffff988`53b0f6a8 fffff803`70c8a469 nt!KeBugCheckEx

01 fffff988`53b0f6b0 fffff803`70c867a5 nt!KiBugCheckDispatch+0x69

02 fffff988`53b0f7f0 fffff803`75261530 nt!KiPageFault+0x465

03 fffff988`53b0f980 fffff803`75261e2d myfault+0x1530

04 fffff988`53b0f9b0 fffff803`75261f88 myfault+0x1e2d

05 fffff988`53b0fb00 fffff803`70ae3da9 myfault+0x1f88

06 fffff988`53b0fb40 fffff803`710d1dd5 nt!IofCallDriver+0x59

07 fffff988`53b0fb80 fffff803`710d172a nt!IopSynchronousServiceTail+0x1a5

08 fffff988`53b0fc20 fffff803`710d1146 nt!IopXxxControlFile+0x5ca

09 fffff988`53b0fd60 fffff803`70c89e95 nt!NtDeviceIoControlFile+0x56

0a fffff988`53b0fdd0 00007ff8`ba39c147 nt!KiSystemServiceCopyEnd+0x25

0b 00000054`344feb48 00000000`00000000 0x00007ff8`ba39c147

3 ffffb000c1c80180 ffff8788e917e0c0 (5) ffffb000c1\

c91140

Child-SP RetAddr Call Site

00 fffff988`5683ec38 fffff803`70ae3da9 Ntfs!NtfsFsdClose

01 fffff988`5683ec40 fffff803`702bb5de nt!IofCallDriver+0x59

02 fffff988`5683ec80 fffff803`702b9f16 FLTMGR!FltpLegacyProcessingAfterPreCallb\

acksCompleted+0x15e

03 fffff988`5683ed00 fffff803`70ae3da9 FLTMGR!FltpDispatch+0xb6

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 157

04 fffff988`5683ed60 fffff803`710cfe4d nt!IofCallDriver+0x59

05 fffff988`5683eda0 fffff803`710de470 nt!IopDeleteFile+0x12d

06 fffff988`5683ee20 fffff803`70aea9d4 nt!ObpRemoveObjectRoutine+0x80

07 fffff988`5683ee80 fffff803`723391f5 nt!ObfDereferenceObject+0xa4

08 fffff988`5683eec0 fffff803`72218ca7 Ntfs!NtfsDeleteInternalAttributeStream+0\

x111

09 fffff988`5683ef00 fffff803`722ff7cf Ntfs!NtfsDecrementCleanupCounts+0x147

0a fffff988`5683ef40 fffff803`722fe87d Ntfs!NtfsCommonCleanup+0xadf

0b fffff988`5683f390 fffff803`70ae3da9 Ntfs!NtfsFsdCleanup+0x1ad

0c fffff988`5683f6e0 fffff803`702bb5de nt!IofCallDriver+0x59

0d fffff988`5683f720 fffff803`702b9f16 FLTMGR!FltpLegacyProcessingAfterPreCallb\

acksCompleted+0x15e

0e fffff988`5683f7a0 fffff803`70ae3da9 FLTMGR!FltpDispatch+0xb6

0f fffff988`5683f800 fffff803`710ccc38 nt!IofCallDriver+0x59

10 fffff988`5683f840 fffff803`710d4bf8 nt!IopCloseFile+0x188

11 fffff988`5683f8d0 fffff803`710d9f3e nt!ObCloseHandleTableEntry+0x278

12 fffff988`5683fa10 fffff803`70c89e95 nt!NtClose+0xde

13 fffff988`5683fa80 00007ff8`ba39c247 nt!KiSystemServiceCopyEnd+0x25

14 000000b5`aacf9df8 00000000`00000000 0x00007ff8`ba39c247

The command gives a pretty good idea of what was going on at the time of the crash.

• The !stacks command lists all thread stacks for all threads by default. A more useful variant is a
search string that lists only threads where a module or function containing this string appears. This
allows locating driver’s code throughout the system (because it may not have been running at the
time of the crash, but it’s on some thread’s call stack). Here’s an example for the above dump:

2: kd> !stacks

Proc.Thread .Thread Ticks ThreadState Blocker

[fffff803710459c0 Idle]

0.000000 fffff80371048400 0000003 RUNNING nt!KiIdleLoop+0x15e

0.000000 ffffb000c17b1140 0000ed9 RUNNING hal!HalProcessorIdle+0xf

0.000000 ffffb000c1955140 0000b6e RUNNING nt!KiIdleLoop+0x15e

0.000000 ffffb000c1c91140 000012b RUNNING nt!KiIdleLoop+0x15e

[ffff8788d6a81300 System]

4.000018 ffff8788d6b8a080 0005483 Blocked nt!PopFxEmergencyWorker+0x3e

4.00001c ffff8788d6bc5140 0000982 Blocked nt!ExpWorkQueueManagerThread+0x\

127

4.000020 ffff8788d6bc9140 000085a Blocked nt!KeRemovePriQueue+0x25c

(truncated)

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 158

2: kd> !stacks 0 myfault

Proc.Thread .Thread Ticks ThreadState Blocker

[fffff803710459c0 Idle]

[ffff8788d6a81300 System]

(truncated)

[ffff8788e99070c0 notmyfault64.exe]

af4.00160c ffff8788e4604080 0000006 RUNNING nt!KeBugCheckEx

(truncated)

The address next to each line is the thread’s ETHREAD address that can be fed to the !thread command.

System Hang

A system crash is the most common type of dump that is typically investigated. However, there is yet
another type of dump that you may need to work with: a hung system. A hung system is a non-responsive
or near non-responsive system. Things seem to be halted or deadlocked in some way - the system does
not crash, so the first issue to deal with is how to get a dump of the system.

A dump file contains some system state, it does not have to be related to a crash or any other bad state.
There are tools (including the kernel debugger) that can generate a dump file at any time.

If the system is still responsive to some extent, the Sysinternals NotMyFault tool can force a system crash
and so force a dump file to be generated (this is in fact the way the dump in the previous section was
generated). Figure 6-8 shows a screenshot of NotMyFault. Selecting the first (default) option and clicking
Crash immediately crashes the system and will generate a dump file (if configured to do so).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 159

Figure 6-8: NotMyFault

NotMyFault uses a driver, myfault.sys that is actually responsible for the crash.

NotMyFault has 32 and 64 bit versions (the later file name ends with “64”). Remember to use
the correct one for the system at hand, otherwise its driver will fail to load.

If the system is completely unresponsive, and you can attach a kernel debugger (the target was configured
for debugging), then debug normally or generate a dump file using the .dump command.

If the system is unresponsive and a kernel debugger cannot be attached, it’s possible to generate a crash
manually if configured in the Registry beforehand (this assumes the hang was somehow expected). When
a certain key combination is detected, the keyboard driver will generate a crash. Consult this link¹ to get
the full details. The crash code in this case is 0xe2 (MANUALLY_INITIATED_CRASH).

¹https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard

Chapter 6: Kernel Mechanisms 160

Thread Synchronization

Threads sometimes need to coordinate work. A canonical example is a driver using a linked list to gather
data items. The driver can be invoked by multiple clients, coming from many threads in one or more
processes. Thismeansmanipulating the linked list must be done atomically, so it’s not corrupted. If multiple
threads access the same memory where at least one is a writer (making changes), this is referred to as a
data race. If a data race occurs, all bets are off and anything can happen. Typically, within a driver, a
system crash occurs sooner or later; data corruption is practically guaranteed.

In such a scenario, it’s essential that while one thread manipulates the linked list, all other threads back
off the linked list, and wait in some way for the first thread to finish its work. Only then another thread
(just one) can manipulate the list. This is an example of thread synchronization.

The kernel provides several primitives that help in accomplishing proper synchronization to protect data
from concurrent access. The following discussed various primitives and techniques for thread synchro-
nization.

Interlocked Operations

The Interlocked set of functions provide convenient operations that are performed atomically by utilizing
the hardware, which means no software objects are involved. If using these functions gets the job done,
then they should be used, as these are as efficient as they can possibly be.

Technically, these Interlocked-family of functions are called compiler intrinsincs, as they are instruc-
tions to the processor, disguised as functions.

The same functions (intrinsics) are available in user-mode as well.

A simple example is incrementing an integer by one. Generally, this is not an atomic operation. If two (or
more) threads try to perform this at the same time on the same memory location, it’s possible (and likely)
some of the increments will be lost. Figure 6-9 shows a simple scenario where incrementing a value by 1
done from two threads ends up with result of 1 instead of 2.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 161

Figure 6-9: Concurrent increment

The example in figure 6-9 is extremely simplistic. With real CPUs there are other effects to
consider, especially caching, which makes the shown scenario even more likely. CPU caching,
store buffers, and other aspects of modern CPUs are non-trivial topics, well beyond the scope
of this book.

Table 6-2 lists some of the Interlocked functions available for drivers use.

Table 6-2: Some Interlocked functions

Function Description

InterlockedIncrement / InterlockedIncrement16
/ InterlockedIncrement64

Atomically increment a 32/16/64 bit integer by one

InterlockedDecrement / 16 / 64 Atomically decrement a 32/16/64 bit integer by one.

InterlockedAdd / InterlockedAdd64 Atomically add one 32/64 bit integer to a variable.

InterlockedExchange / 8 / 16 / 64 Atomically exchange two 32/8/16/64 bit values.

InterlockedCompareExchange / 64 / 128 Atomically compare a variable with a value. If equal
exchange with the provided value and return TRUE;
otherwise, place the current value in the variable and
return FALSE.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 162

The InterlockedCompareExchange family of functions are used in lock-free programming, a
programming technique to perform complex atomic operations without using software objects.
This topic is well beyond the scope of this book.

The functions in table 6-2 are also available in user mode, as these are not really functions, but
rather CPU intrinsics - special instructions to the CPU.

Dispatcher Objects

The kernel provides a set of primitives known as Dispatcher Objects, also called Waitable Objects. These
objects have a state, either signaled or non-signaled, where the meaning of signaled and non-signaled
depends on the type of object. They are called “waitable” because a thread can wait on such objects until
they become signaled. While waiting, the thread does not consume CPU cycles as it’s in aWaiting state.

The primary functions used for waiting are KeWaitForSingleObject and KeWaitForMultipleObjects.
Their prototypes (with simplified SAL annotations for clarity) are shown below:

NTSTATUS KeWaitForSingleObject (

In PVOID Object,

In KWAIT_REASON WaitReason,

In KPROCESSOR_MODE WaitMode,

In BOOLEAN Alertable,

_In_opt_ PLARGE_INTEGER Timeout);

NTSTATUS KeWaitForMultipleObjects (

In ULONG Count,

_In_reads_(Count) PVOID Object[],

In WAIT_TYPE WaitType,

In KWAIT_REASON WaitReason,

In KPROCESSOR_MODE WaitMode,

In BOOLEAN Alertable,

_In_opt_ PLARGE_INTEGER Timeout,

_Out_opt_ PKWAIT_BLOCK WaitBlockArray);

Here is a rundown of the arguments to these functions:

• Object - specifies the object to wait for. Note these functions work with objects, not handles. If you
have a handle (maybe provided by user mode), call ObReferenceObjectByHandle to get the pointer
to the object.

• WaitReason - specifies the wait reason. The list of wait reasons is pretty long, but drivers should typi-
cally set it to Executive, unless it’s waiting because of a user request, and if so specify UserRequest.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 163

• WaitMode - can be UserMode or KernelMode. Most drivers should specify KernelMode.
• Alertable - indicates if the thread should be in an alertable state during the wait. Alertable state
allows delivering of user mode Asynchronous Procedure Calls (APCs). User mode APCs can be
delivered if wait mode is UserMode. Most drivers should specify FALSE.

• Timeout - specifies the time to wait. If NULL is specified, the wait is indefinite - as long as it takes for
the object to become signaled. The units of this argument are in 100nsec chunks, where a negative
number is relative wait, while a positive number is an absolute wait measured from January 1, 1601
at midnight.

• Count - the number of objects to wait on.
• Object[] - an array of object pointers to wait on.
• WaitType - specifies whether to wait for all object to become signaled at once (WaitAll) or just one
object (WaitAny).

• WaitBlockArray - an array of structures used internally to manage the wait operation. It’s optional
if the number of objects is <= THREAD_WAIT_OBJECTS (currently 3) - the kernel will use the built-in
array present in each thread. If the number of objects is higher, the driver must allocate the correct
size of structures from non-paged memory, and deallocate them after the wait is over.

The main return values from KeWaitForSingleObject are:

• STATUS_SUCCESS - the wait is satisfied because the object state has become signaled.
• STATUS_TIMEOUT - the wait is satisfied because the timeout has elapsed.

Note that all return values from the wait functions pass the NT_SUCCESS macro with true.

KeWaitForMultipleObjects return values include STATUS_TIMEOUT just as KeWaitForSingleObject.
STATUS_SUCCESS is returned if WaitAll wait type is specified and all objects become signaled. For
WaitAny waits, if one of the objects became signaled, the return value is STATUS_WAIT_0 plus its index in
the array of objects (Note that STATUS_WAIT_0 is defined to be zero).

There are some fine details associated with the wait functions, especially if wait mode is
UserMode and the wait is alertable. Check the WDK docs for the details.

Table 6-3 lists some of the common dispatcher objects and the meaning of signaled and non-signaled for
these objects.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 164

Table 6-3: Object Types and signaled meaning

Object Type Signaled meaning Non-Signaled meaning

Process process has terminated (for whatever reason) process has not terminated

Thread thread has terminated (for whatever reason) thread has not terminated

Mutex mutex is free (unowned) mutex is held

Event event is set event is reset

Semaphore semaphore count is greater than zero semaphore count is zero

Timer timer has expired timer has not yet expired

File asynchronous I/O operation completed asynchronous I/O operation is in progress

All the object types from table 6-3 are also exported to user mode. The primary waiting
functions in user mode are WaitForSingleObject and WaitForMultipleObjects.

The following sections will discuss some of common object types useful for synchronization in drivers.
Some other objects will be discussed as well that are not dispatcher objects, but support waiting as well.

Mutex

Mutex is the classic object for the canonical problem of one thread among many that can access a shared
resource at any one time.

Mutex is sometimes referred to as Mutant (its original name). These are the same thing.

A mutex is signaled when it’s free. Once a thread calls a wait function and the wait is satisfied, the mutex
becomes non-signaled and the thread becomes the owner of the mutex. Ownership is critical for a mutex.
It means the following:

• If a thread is the owner of a mutex, it’s the only one that can release the mutex.
• A mutex can be acquired more than once by the same thread. The second attempt succeeds auto-
matically since the thread is the current owner of the mutex. This also means the thread needs to
release the mutex the same number of times it was acquired; only then the mutex becomes free
(signaled) again.

Using a mutex requires allocating a KMUTEX structure from non-paged memory. The mutex API contains
the following functions working on that KMUTEX:

• KeInitializeMutex or KeInitializeMutant must be called once to initialize the mutex.
• One of the waiting functions, passing the address of the allocated KMUTEX structure.
• KeReleaseMutex is called when a thread that is the owner of the mutex wants to release it.

Here are the definitions of the APIs that can initialize a mutex:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 165

VOID KeInitializeMutex (

Out PKMUTEX Mutex,

In ULONG Level);

VOID KeInitializeMutant (// defined in ntifs.h

Out PKMUTANT Mutant,

In BOOLEAN InitialOwner);

The Level parameter in KeInitializeMutex is not used, so zero is a good value as any. KeInitializeMutant
allows specifying if the current thread should be the initial owner of the mutex. KeInitializeMutex
initializes the mutex to be unowned.

Releasing the mutex is done with KeReleaseMutex:

LONG KeReleaseMutex (

Inout PKMUTEX Mutex,

In BOOLEAN Wait);

The returned value is the previous state of the mutex object (including recursive ownership count), and
should mostly be ignored (although it may sometimes be useful for debugging purposes). The Wait param-
eter indicates whether the next API call is going to be one of the wait functions. This is used as a hint to
the kernel that can optimize slightly if the thread is about to enter a wait state.

As part of calling KeReleaseMutex, the IRQL is raised to DISPATCH_LEVEL. If Wait is TRUE, the
IRQL is not lowered, which would allow the next wait function (KeWaitForSingleObject or
KeWaitForMultipleObjects) to execute more efficiently, as no context switch can interfere.

Given the above functions, here is an example using a mutex to access some shared data so that only a
single thread does so at a time:

KMUTEX MyMutex;

LIST_ENTRY DataHead;

void Init() {

KeInitializeMutex(&MyMutex, 0);

}

void DoWork() {

// wait for the mutex to be available

KeWaitForSingleObject(&MyMutex, Executive, KernelMode, FALSE, nullptr);

// access DataHead freely

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 166

// once done, release the mutex

KeReleaseMutex(&MyMutex, FALSE);

}

It’s important to release the mutex no matter what, so it’s better to use __try / __finally to make sure
it’s executed however the __try block is exited:

void DoWork() {

// wait for the mutex to be available

KeWaitForSingleObject(&MyMutex, Executive, KernelMode, FALSE, nullptr);

__try {

// access DataHead freely

}

__finally {

// once done, release the mutex

KeReleaseMutex(&MyMutex, FALSE);

}

}

Figure 6-10 shows two threads attempting to acquire the mutex at roughly the same time, as they want to
access the same data. One thread succeeds in acquiring the mutex, the other has to wait until the mutex
is released by the owner before it can acquire it.hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 167

Figure 6-10: Acquiring a mutex

Since using __try/__finally is a bit awkward, we can use C++ to create a RAII wrapper for waits. This
could also be used for other synchronization primitives.

First, we’ll create a mutex wrapper that provides functions named Lock and Unlock:

struct Mutex {

void Init() {

KeInitializeMutex(&_mutex, 0);

}

void Lock() {

KeWaitForSingleObject(&_mutex, Executive, KernelMode, FALSE, nullptr);

}

void Unlock() {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 168

KeReleaseMutex(&_mutex, FALSE);

}

private:

KMUTEX _mutex;

};

Then we can create a generic RAII wrapper for waiting for any type that has a Lock and Unlock functions:

template<typename TLock>

struct Locker {

explicit Locker(TLock& lock) : _lock(lock) {

lock.Lock();

}

~Locker() {

_lock.Unlock();

}

private:

TLock& _lock;

};

With these definitions in place, we can replace the code using the mutex with the following:

Mutex MyMutex;

void Init() {

MyMutex.Init();

}

void DoWork() {

Locker<Mutex> locker(MyMutex);

// access DataHead freely

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 169

Since locking should be done for the shortest time possible, you can use an artificial C/C++
scope containing Locker and the code to execute while the mutex is owned, to acquire the
mutex as late as possible and release it as soon as possible.

With C++ 17 and later, Locker can be used without specifying the type like so:

Locker locker(MyMutex);

Since Visual Studio currently uses C++ 14 as its default language standard, you’ll have to change
that in the project properties under the General node / C++ Language Standard.

We’ll use the same Locker type with other synchronization primitives in subsequent sections.

Abandoned Mutex

A thread that acquires amutex becomes themutex owner. The owner thread is the only one that can release
the mutex. What happens to the mutex if the owner thread dies for whatever reason? The mutex then
becomes an abandoned mutex. The kernel explicitly releases the mutex (as no thread can do it) to prevent
a deadlock, so another thread would be able to acquire that mutex normally. However, the returned value
from the next successful wait call is STATUS_ABANDONED rather than STATUS_SUCCESS. A driver should
log such an occurrence, as it frequently indicates a bug.

Other Mutex Functions

Mutexes support a fewmiscellaneous functions that may be useful at times, mostly for debugging purposes.
KeReadStateMutex returns the current state (recursive count) of the mutex, where 0 means “unowned”:

LONG KeReadStateMutex (_In_ PKMUTEX Mutex);

Just remember that after the call returns, the result may no longer be correct as the mutex state may have
changed because some other thread has acquired or released the mutex before the code gets to examine
the result. The benefit of this function is in debugging scenarios only.

You can get the current mutex owner with a call to KeQueryOwnerMutant (defined in <ntifs.h>) as a
CLIENT_ID data structure, containing the thread and process IDs:

VOID KeQueryOwnerMutant (

In PKMUTANT Mutant,

Out PCLIENT_ID ClientId);

Just like with KeReadStateMutex, the returned information may be stale if other threads are doing work
with that mutex.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 170

Fast Mutex

A fast mutex is an alternative to the classic mutex, providing better performance. It’s not a dispatcher
object, and so has its own API for acquiring and releasing it. A fast mutex has the following characteristics
compared with a regular mutex:

• A fast mutex cannot be acquired recursively. Doing so causes a deadlock.
• When a fast mutex is acquired, the CPU IRQL is raised to APC_LEVEL (1). This prevents any delivery
of APCs to that thread.

• A fast mutex can only be waited on indefinitely - there is no way to specify a timeout.

Because of the first two bullets above, the fast mutex is slightly faster than a regular mutex. In fact, most
drivers requiring a mutex use a fast mutex unless there is a compelling reason to use a regular mutex.

Don’t use I/O operations while holding on to a fast mutex. I/O completions are delivered with
a special kernel APC, but those are blocked while holding a fast mutex, creating a deadlock.

A fast mutex is initialized by allocating a FAST_MUTEX structure from non-paged memory and calling
ExInitializeFastMutex. Acquiring the mutex is done with ExAcquireFastMutex or
ExAcquireFastMutexUnsafe (if the current IRQL happens to be APC_LEVEL already). Releasing a fast
mutex is accomplished with ExReleaseFastMutex or ExReleaseFastMutexUnsafe.

Semaphore

The primary goal of a semaphore is to limit something, such as the length of a queue. The semaphore
is initialized with its maximum and initial count (typically set to the maximum value) by calling
KeInitializeSemaphore. While its internal count is greater than zero, the semaphore is signaled. A
thread that calls KeWaitForSingleObject has its wait satisfied, and the semaphore count drops by one.
This continues until the count reaches zero, at which point the semaphore becomes non-signaled.

Semaphores use the KSEMAPHORE structure to hold their state, which must be allocated from non-paged
memory. Here is the definition of KeInitializeSemaphore:

VOID KeInitializeSemaphore (

Out PRKSEMAPHORE Semaphore,

In LONG Count, // starting count

In LONG Limit); // maximum count

As an example, imagine a queue of work items managed by the driver. Some threads want to add items to
the queue. Each such thread calls KeWaitForSingleObject to obtain one “count” of the semaphore. As
long as the count is greater than zero, the thread continues and adds an item to the queue, increasing its
length, and semaphore “loses” a count. Some other threads are tasked with processing work items from
the queue. Once a thread removes an item from the queue, it calls KeReleaseSemaphore that increments
the count of the semaphore, moving it to the signaled state again, allowing potentially another thread to
make progress and add a new item to the queue.

KeReleaseSemaphore is defined like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 171

LONG KeReleaseSemaphore (

Inout PRKSEMAPHORE Semaphore,

In KPRIORITY Increment,

In LONG Adjustment,

In BOOLEAN Wait);

The Increment parameter indicates the priority boost to apply to the thread that has a successful waiting
on the semaphore. The details of how this boost works are described in the next chapter. Most drivers
should provide the value 1 (that’s the default used by the kernel when a semaphore is released by the user
mode ReleaseSemaphore API). Adjustment is the value to add to the semaphore’s current count. It’s
typically one, but can be a higher value if that makes sense. The last parameter (Wait) indicates whether a
wait operation (KeWaitForSingleObject or KeWaitForMultipleObjects) immediately follows (see the
information bar in the mutex discussion above). The function returns the old count of the semaphore.

Is a semaphore with a maximum count of one equivalent to a mutex? At first, it seems so,
but this is not the case. A semaphore lacks ownership, meaning one thread can acquire the
semaphore, while another can release it. This is a strength, not a weakness, as described in the
above example. A Semaphore’s purpose is very different from that of a mutex.

You can read the current count of the semaphore by calling KeReadStateSemaphore:

LONG KeReadStateSemaphore (_In_ PRKSEMAPHORE Semaphore);

Event

An event encapsulates a boolean flag - either true (signaled) or false (non-signaled). The primary purpose
of an event is to signal something has happened, to provide flow synchronization. For example, if some
condition becomes true, an event can be set, and a bunch of threads can be released from waiting and
continue working on some data that perhaps is now ready for processing.

The are two types of events, the type being specified at event initialization time:

• Notification event (manual reset) - when this event is set, it releases any number of waiting threads,
and the event state remains set (signaled) until explicitly reset.

• Synchronization event (auto reset) - when this event is set, it releases at most one thread (no matter
how many are waiting for the event), and once released the event goes back to the reset (non-
signaled) state automatically.

An event is created by allocating a KEVENT structure from non-paged memory and then calling
KeInitializeEvent to initialize it, specifying the event type (NotificationEvent or
SynchronizationEvent) and the initial event state (signaled or non-signaled):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 172

VOID KeInitializeEvent (

Out PRKEVENT Event,

In EVENT_TYPE Type, // NotificationEvent or SynchronizationEvent

In BOOLEAN State); // initial state (signaled=TRUE)

Notification events are calledManual-reset in user-mode terminology, while Synchronization events are
called Auto-reset. Despite the name changes, these are the same.

Waiting for an event is done normally with the KeWaitXxx functions. Calling KeSetEvent sets the event to
the signaled state, while calling KeResetEvent or KeClearEvent resets it (non-signaled state) (the latter
function being a bit quicker as it does not return the previous state of the event):

LONG KeSetEvent (

Inout PRKEVENT Event,

In KPRIORITY Increment,

In BOOLEAN Wait);

VOID KeClearEvent (_Inout_ PRKEVENT Event);

LONG KeResetEvent (_Inout_ PRKEVENT Event);

Just like with a semaphore, setting an event allows providing a priority boost to the next successful wait
on the event.

Finally, the current state of an event (signaled or non-signaled) can be read with KeReadStateEvent:

LONG KeReadStateEvent (_In_ PRKEVENT Event);

Named Events

Event objects can be named (as can mutexes and semaphores). This can be used as an easy way of sharing
an event object with other drivers orwith user-mode clients. Oneway of creating or opening a named event
by name iswith the helper functions IoCreateSynchronizationEvent and IoCreateNotificationEvent
APIs:

PKEVENT IoCreateSynchronizationEvent(

In PUNICODE_STRING EventName,

Out PHANDLE EventHandle);

PKEVENT IoCreateNotificationEvent(

In PUNICODE_STRING EventName,

Out PHANDLE EventHandle);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 173

These APIs create the named event object if it does not exist and set its state to signaled, or obtain another
handle to the named event if it does exist. The name itself is provided as a normal UNICODE_STRING and
must be a full path in the Object Manager’s namespace, as can be observed in the Sysinternals WinObj
tool.

These APIs return two values: the pointer to the event object (direct returned value) and an open handle
in the EventHandle parameter. The returned handle is a kernel handle, to be used by the driver only. The
functions return NULL on failure.

You can use the previously described events API to manipulate the returned event by address. Don’t forget
to close the returned handle (ZwClose) to prevent a leak. Alternatively, you can call ObReferenceObject
on the returned pointer to make sure it’s not prematurely destroyed and close the handle immediately. In
that case, call ObDereferenceObject when you’re done with the event.

Built-in Named Kernel Events

One use of the IoCreateNotificationEvent API is to gain access to a bunch of named event objects the
kernel provides in the \KernelObjects directory. These events provide various notifications for memory
related status, that may be useful for kernel drivers.

Figure 6-11 shows the named events inWinObj. Note that the lower symbolic links are actually events, as
these are internally implemented as Dynamic Symbolic Links (see more details at https://scorpiosoftware.
net/2021/04/30/dynamic-symbolic-links/).

Figure 6-11: Kernel Named Events

All the events shown in figure 6-11 are Notification events. Table 6-5 lists these events with their meaning.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://scorpiosoftware.net/2021/04/30/dynamic-symbolic-links/
https://scorpiosoftware.net/2021/04/30/dynamic-symbolic-links/

Chapter 6: Kernel Mechanisms 174

Table 6-5: Named kernel events

Name Description

HighMemoryCondition The system has lots of free physical memory

LowMemoryCondition The system is low on physical memory

HighPagedPoolCondition The system has lots of free paged pool memory

LowPagedPoolCondition The system is low on paged pool memory

HighNonPagedPoolCondition The system has lots of free non-paged pool memory

LowNonPagedPoolCondition The system is low on non-paged pool memory

HighCommitCondition The system has lots of free memory in RAM and paging file(s)

LowCommitCondition The system is low on RAM and paging file(s)

MaximumCommitCondition The system is almost out of memory, and no further increase in page files size is
possible

Drivers can use these events as hints to either allocate more memory or free memory as required. The
following example shows how to obtain one of these events and wait for it on some thread (error handling
ommitted):

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\KernelObjects\\LowCommitCondition");

HANDLE hEvent;

auto event = IoCreateNotificationEvent(&name, &hEvent);

// on some driver-created thread...

KeWaitForSingleObject(event, Executive, KernelMode, FALSE, nullptr);

// free some memory if possible...

//

// close the handle

ZwClose(hEvent);

Write a driver that waits on all these named events and uses DbgPrint to indicate a signaled
event with its description.

Executive Resource

The classic synchronization problem of accessing a shared resource by multiple threads was dealt with by
using a mutex or fast mutex. This works, but mutexes are pessimistic, meaning they allow a single thread
to access a shared resource. That may be unfortunate in cases where multiple threads access a shared
resource by reading only.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 175

In cases where it’s possible to distinguish data changes (writes) vs. just looking at the data (reading)
- there is a possible optimization. A thread that requires access to the shared resource can declare its
intentions - read or write. If it declares read, other threads declaring read can do so concurrently, improving
performance. This is especially useful if the shared data changes infrequently, i.e. there are considerably
more reads than writes.

Mutexes by their very nature are pessimistic locks, since they enforce a single thread at a time execution.
This makes them always work at the expense of possible performance gains with concurrency.

The kernel provides yet another synchronization primitive that is geared towards this scenario, known as
single writer, multiple readers. This object is the Executive Resource, another special object which is not a
dispatcher object.

Initializing an executive resource is done by allocating an ERESOURCE structure from non-paged pool and
calling ExInitializeResourceLite. Once initialized, threads can acquire either the exclusive lock (for
writes) using ExAcquireResourceExclusiveLite or the shared lock by calling
ExAcquireResourceSharedLite. Once done the work, a thread releases the executive resource with
ExReleaseResourceLite (no matter whether it acquired as exclusive or not).
The requirement for using the acquire and release functions is that normal kernel APCs must be disabled.
This can be done with KeEnterCtriticalRegion just before the acquire call, and then
KeLeaveCriticalRegion just after the release call. The following code snippet demonstrates that:

ERESOURCE resource;

void WriteData() {

KeEnterCriticalRegion();

ExAcquireResourceExclusiveLite(&resource, TRUE); // wait until acquired

// Write to the data

ExReleaseResourceLite(&resource);

KeLeaveCriticalRegion();

}

Since these calls are so common when working with executive resources, there are functions that perform
both operations with a single call:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 176

void WriteData() {

ExEnterCriticalRegionAndAcquireResourceExclusive(&resource);

// Write to the data

ExReleaseResourceAndLeaveCriticalRegion(&resource);

}

A similar function exists for shared acquisition, ExEnterCriticalRegionAndAcquireResourceShared.
Finally, before freeing the memory the resource occupies, call ExDeleteResourceLite to remove the
resource from the kernel’s resource list:

NTSTATUS ExDeleteResourceLite(

Inout PERESOURCE Resource);

You can query the number of waiting threads for exclusive and shared access of a resource with the
functions ExGetExclusiveWaiterCount and ExGetSharedWaiterCount, respectively.

There are other functions for working with executive resources for some specialized cases. Consult the
WDK documentation for more information.

Create appropriate C++ RAII wrappers for executive resources.

High IRQL Synchronization

The sections on synchronization so far have dealt with threads waiting for various types of objects. How-
ever, in some scenarios, threads cannot wait - specifically, when the processor’s IRQL is DISPATCH_LEVEL
(2) or higher. This section discusses these scenarios and how to handle them.

Let’s examine an example scenario: A driver has a timer, set up with KeSetTimer and uses a DPC to
execute code when the timer expires. At the same time, other functions in the driver, such as IRP_MJ_-
DEVICE_CONTROL may execute at the same time (runs at IRQL 0). If both these functions need to access a
shared resource (e.g. a linked list), they must synchronize access to prevent data corruption.

The problem is that a DPC cannot call KeWaitForSingleObject or any other waiting function - calling
any of these is fatal. So how can these functions synchronize access?

The simple case is where the system has a single CPU. In this case, when accessing the shared resource,
the low IRQL function just needs to raise IRQL to DISPATCH_LEVEL and then access the resource. During

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 177

that time a DPC cannot interfere with this code since the CPU’s IRQL is already 2. Once the code is done
with the shared resource, it can lower the IRQL back to zero, allowing the DPC to execute. This prevents
execution of these routines at the same time. Figure 6-12 shows this setup.

Figure 6-12: High-IRQL synchronization by manipulating IRQL

In standard systems, where there is more than one CPU, this synchronization method is not enough,
because the IRQL is a CPU’s property, not a system-wide property. If one CPU’s IRQL is raised to 2, if a
DPC needs to execute, it can execute on another CPU whose IRQL may be zero. In this case, it’s possible
that both functions execute at the same time, accessing the shared data, causing a data race.

How can we solve that? We need something like a mutex, but that can synchronize between processors -
not threads. That’s because when the CPU’s IRQL is 2 or higher, the thread itself loses meaning because
the scheduler cannot do work on that CPU. This kind of object exists - the Spin Lock.

The Spin Lock

The Spin Lock is just a bit in memory that is used with atomic test-and-set operations via an API. When
a CPU tries to acquire a spin lock, and that spin lock is not currently free (the bit is set), the CPU keeps

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 178

spinning on the spin lock, busy waiting for it to be released by another CPU (remember, putting the thread
into a waiting state cannot be done at IRQL DISPATCH_LEVEL or higher).

In the scenario depicted in the previous section, a spin lock would need to be allocated and initialized. Each
function that requires access to the shared data needs to raise IRQL to 2 (if not already there), acquire the
spin lock, perform the work on the shared data, and finally release the spin lock and lower IRQL back (if
applicable; not so for a DPC). This chain of events is depicted in figure 6-13.

Creating a spin lock requires allocating a KSPIN_LOCK structure from non-paged pool, and calling
KeInitializeSpinLock. This puts the spin lock in the unowned state.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 179

Figure 6-13: High-IRQL synchronization with a Spin Lock

Acquiring a spin lock is always a two-step process: first, raise the IRQL to the proper level, which is the
highest level of any function trying to synchronize access to a shared resource. In the previous example, this
associated IRQL is 2. Second, acquire the spin lock. These two steps are combined by using the appropriate
API. This process is depicted in figure 6-14.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 180

Figure 6-14: Acquiring a Spin Lock

Acquiring and releasing a spin lock is done using an API that performs the two steps outlined in figure
6-12. Table 6-4 shows the relevant APIs and the associated IRQL for the spin locks they operate on.

Table 6-4: APIs for working with spin locks

IRQL Acquire function Release function Remarks

DISPATCH_LEVEL (2) KeAcquireSpinLock KeReleaseSpinLock

DISPATCH_LEVEL (2) KeAcquireSpinLockAtDpcLevel KeReleaseSpinLockFromDpcLevel (a)

Device IRQL KeAcquireInterruptSpinLock KeReleaseInterruptSpinLock (b)

Device IRQL KeSynchronizeExecution (none) (c)

HIGH_LEVEL ExInterlockedXxx (none) (d)

Remarks on table 6-4:

(a) Can be called at IRQL 2 only. Provides an optimization that just acquires the spin lock without changing
IRQLs. The canonical scenario is calling these APIs within a DPC routine.
(b) Useful for synchronizing an ISR with any other function. Hardware-based drivers with an interrupt
source use these routines. The argument is an interrupt object (KINTERRUPT), where the spin lock is part
of it.
(c) KeSynchronizeExecution acquires the interrupt object spin lock, calls the provided callback and
releases the spin lock. The net effect is the same as calling the pair KeAcquireInterruptSpinLock /

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 181

KeReleaseInterruptSpinLock.
(d) A set of three functions for manipulating LIST_ENTRY-based linked lists. These functions use the
provided spin lock and raise IRQL to HIGH_LEVEL. Because of the high IRQL, these routines can be used
in any IRQL, since raising IRQL is always a safe operation.

If you acquire a spin lock, be sure to release it in the same function. Otherwise, you’re risking
a deadlock or a system crash.

Where do spin locks come from? The scenario described here requires the driver to allocate
its own spin lock to protect concurrent access to its own data from high-IRQL functions. Some
spin locks exist as part of other objects, such as the KINTERRUPT object used by hardware-based
drivers that handle interrupts. Another example is a system-wide spin lock known as theCancel
spin lock, which is acquired by the kernel before calling a cancellation routine registered by a
driver. This is the only case where a driver released a spin lock it has not acquired explicitly.

If several CPUs try to acquire the same spin lock at the same time, which CPU gets the spin
lock first? Normally, there is no order - the CPU with fastest electrons wins :). The kernel does
provide an alternative, called Queued spin locks that serve CPUs on a FIFO basis. These only
work with IRQL DISPATCH_LEVEL. The relevant APIs are KeAcquireInStackQueuedSpinLock
and KeReleaseInStackQueuedSpinLock. Check the WDK documentation for more details.

Write a C++ wrapper for a DISPATCH_LEVEL spin lock that works with the Locker RAII class
defined earlier in this chapter.

Queued Spin Locks

A variant on classic spin locks are queued spin locks. These behave the same as normal spin locks, with
the following differences:

• Queued spin locks always raise to IRQL DISPTACH_LEVEL (2). This means they cannot be used for
synchronizing with an ISR, for example.

• There is a queue of CPUwaiting to acquire the spin lock, on a FIFO basis. This is more efficient when
high contention is expected. Normal spin locks provide no gauarantee as to the order of acquisition
when multiple CPUs attempt to acquire a spin lock.

A queued spin lock is initialized just like a normal spin lock (KeInitializeSpinLock). Acquiring and
releasing a queued spin lock is achieved with different APIs:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 182

void KeAcquireInStackQueuedSpinLock (

Inout PKSPIN_LOCK SpinLock,

Out PKLOCK_QUEUE_HANDLE LockHandle);

void KeReleaseInStackQueuedSpinLock (

In PKLOCK_QUEUE_HANDLE LockHandle);

Except for a spin lock, the caller provides an opaque KLOCK_QUEUE_HANDLE structure that is filled in by
KeAcquireInStackQueuedSpinLock. The same onemust be passed to KeReleaseInStackQueuedSpinLock.

Just like with normal dispatch-level spin locks, shortcuts exist if the caller is already at IRQL DISPATCH_-
LEVEL. KeAcquireInStackQueuedSpinLockAtDpcLevel acquires the spin lock with no IRQL changes,
while KeReleaseInStackQueuedSpinLockFromDpcLevel releases it.

Write a C++ RAII wrapper for a queued spin lock.

Work Items

Sometimes there is a need to run a piece of code on a different thread than the executing one. One
way to do that is to create a thread explicitly and task it with running the code. The kernel provides
functions that allow a driver to create a separate thread of execution: PsCreateSystemThread and
IoCreateSystemThread (available in Windows 8+). These functions are appropriate if the driver needs
to run code in the background for a long time. However, for time-bound operations, it’s better to use a
kernel-provided thread pool that will execute your code on some system worker thread.

PsCreateSystemThread and IoCreateSystemThread are discussed in chapter 8.

IoCreateSystemThread is preferred over PsCreateSystemThread, because is allows associat-
ing a device or driver object with the thread. This makes the I/O system add a reference to the
object, which makes sure the driver cannot be unloaded prematurely while the thread is still
executing.

A thread created by PsCreateSystemThread must terminate itself eventually by calling
PsTerminateSystemThread (fromwithin the thread). This function never returns if successful.

Work items is the term used to describe functions queued to the system thread pool. A driver can allocate
and initialize a work item, pointing to the function the driver wishes to execute, and then the work item
can be queued to the pool. This may seem very similar to a DPC, the primary difference being work items

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 183

always execute at IRQL PASSIVE_LEVEL (0). Thus, work items can be used by IRQL 2 code (such as DPCs)
to perform operations not normally allowed at IRQL 2 (such as I/O operations).

Creating and initializing a work item can be done in one of two ways:

• Allocate and initialize the work item with IoAllocateWorkItem. The function returns a pointer to
the opaque IO_WORKITEM. When finished with the work item it must be freed with IoFreeWorkItem.

• Allocate an IO_WORKITEM structure dynamically with size provided by IoSizeofWorkItem. Then
call IoInitializeWorkItem. When finished with the work item, call IoUninitializeWorkItem.

These functions accept a device object, so make sure the driver is not unloaded while there is a work item
queued or executing.

There is another set of APIs for work items, all start with Ex, such as ExQueueWorkItem. These
functions do not associate the work item with anything in the driver, so it’s possible for the
driver to be unloaded while a work item is still executing. These APIs are marked as deprecated
- always prefer using the Io functions.

To queue the work item, call IoQueueWorkItem. Here is its definition:

viud IoQueueWorkItem(

Inout PIO_WORKITEM IoWorkItem, // the work item

In PIO_WORKITEM_ROUTINE WorkerRoutine, // the function to be called

In WORK_QUEUE_TYPE QueueType, // queue type

_In_opt_ PVOID Context); // driver-defined value

The callback function the driver needs to provide has the following prototype:

IO_WORKITEM_ROUTINE WorkItem;

void WorkItem(

In PDEVICE_OBJECT DeviceObject,

_In_opt_ PVOID Context);

The system thread pool has several queues (at least logically), based on the thread priorities that serve
these work items. There are several levels defined:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 6: Kernel Mechanisms 184

typedef enum _WORK_QUEUE_TYPE {

CriticalWorkQueue, // priority 13

DelayedWorkQueue, // priority 12

HyperCriticalWorkQueue, // priority 15

NormalWorkQueue, // priority 8

BackgroundWorkQueue, // priority 7

RealTimeWorkQueue, // priority 18

SuperCriticalWorkQueue, // priority 14

MaximumWorkQueue,

CustomPriorityWorkQueue = 32

} WORK_QUEUE_TYPE;

The documentation indicates DelayedWorkQueue must be used, but in reality, any other supported level
can be used.

There is another function that can be used to queue a work item: IoQueueWorkItemEx. This
function uses a different callback that has an added parameter which is the work item itself.
This is useful if the work item function needs to free the work item before it exits.

Summary

In this chapter, we looked at various kernel mechanisms driver developers should be aware of and use. In
the next chapter, we’ll take a closer look at I/O Request Packets (IRPs).hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet
After a typical driver completes its initialization in DriverEntry, its primary job is to handle requests.
These requests are packaged as the semi-documented I/O Request Packet (IRP) structure. In this chapter,
we’ll take a deeper look at IRPs and how a driver handles common IRP types.

In This chapter:

• Introduction to IRPs
• Device Nodes
• IRP and I/O Stack Location
• Dispatch Routines
• Accessing User Buffers
• Putting it All Together: The Zero Driver

Introduction to IRPs

An IRP is a structure that is allocated from non-paged pool typically by one of the “managers” in the
Executive (I/O Manager, Plug & Play Manager, Power Manager), but can also be allocated by the driver,
perhaps for passing a request to another driver. Whichever entity allocating the IRP is also responsible for
freeing it.

An IRP is never allocated alone. It’s always accompanied by one or more I/O Stack Location structures
(IO_STACK_LOCATION). In fact, when an IRP is allocated, the caller must specify how many I/O stack
locations need to be allocated with the IRP. These I/O stack locations follow the IRP directly in memory.
The number of I/O stack locations is the number of device objects in the device stack. We’ll discuss device
stacks in the next section. When a driver receives an IRP, it gets a pointer to the IRP structure itself,
knowing it’s followed by a set of I/O stack location, one of which is for the driver’s use. To get the correct
I/O stack location, a driver calls IoGetCurrentIrpStackLocation (actually a macro). Figure 7-1 shows a
conceptual view of an IRP and its associated I/O stack locations.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 186

Figure 7-1: IRP and its I/O stack locations

The parameters of the request are somehow “split” between the main IRP structure and the current IO_-
STACK_LOCATION.

Device Nodes

The I/O system in Windows is device-centric, rather than driver-centric. This has several implications:

• Device objects can be named, and handles to device objects can be opened. The CreateFile function
accepts a symbolic link that leads to a device object. CreateFile cannot accept a driver’s name as
an argument.

• Windows supports device layering - one device can be layered on top of another. Any request
destined for a lower device will reach the uppermost device first. This layering is common for
hardware-based devices, but it works with any device type.

Figure 7-2 shows an example of several layers of devices, “stacked” one on top of the other. This set of
devices is known as a device stack, sometimes referred to as device node (although the term device node is
often used with hardware device stacks). Figure 7-1 shows six layers, or six devices. Each of these devices
is represented by a DEVICE_OBJECT structure created by calling the standard IoCreateDevice function.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 187

Figure 7-2: Layered devices

The different device objects that comprise the device node (devnode) layers are labeled according to their
role in the devnode. These roles are relevant in a hardware-based devnode.

All the device objects in figure 7-2 are just DEVICE_OBJECT structures, each created by a different driver
that is in charge of that layer. More generically, this kind of device node does not have to be related to
hardware-based device drivers.

Here is a quick rundown of the meaning of the labels present in figure 7-2:

• PDO (Physical Device Object) - Despite the name, there is nothing “physical” about it. This device
object is created by a bus driver - the driver that is in charge of the particular bus (e.g. PCI, USB,
etc.). This device object represents the fact that there is some device in that slot on that bus.

• FDO (Functional Device Object) - This device object is created by the “real” driver; that is, the driver
typically provided by the hardware’s vendor that understands the details of the device intimately.

• FiDO (Filter Device Object) - These are optional filter devices created by filter drivers.

The Plug & Play (P&P) manager, in this case, is responsible for loading the appropriate drivers, starting
from the bottom. As an example, suppose the devnode in figure 7-2 represents a set of drivers that manage

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 188

a PCI network card. The sequence of events leading to the creation of this devnode can be summarized as
follows:

1. The PCI bus driver (pci.sys) recognizes the fact that there is something in that particular slot. It
creates a PDO (IoCreateDevice) to represent this fact. The bus driver has no idea whether this a
network card, video card or something else; it only knows there is something there and can extract
basic information from its controller, such as the Vendor ID and Device ID of the device.

2. The PCI bus driver notifies the P&P manager that it has changes on its bus (calls

IoInvalidateDeviceRelations with the BusRelations enumeration value).

3. The P&P manager requests a list of PDOs managed by the bus driver. It receives back a list of PDOs,
in which this new PDO is included.

4. Now the P&P manager’s job is to find and load the proper driver that should manage this new PDO.
It issues a query to the bus driver to request the full hardware device ID.

5. With this hardware ID in hand, the P&P manager looks in the Registry at HKLM\System\ Current-
ControlSet\Enum\PCI\(HardwareID). If the driver has been loaded before, it will be registered there,
and the P&Pmanager will load it. Figure 7-3 shows an example hardware ID in the registry (NVIDIA
display driver).

6. The driver loads and creates the FDO (another call to IoCreateDevice), but adds an additional
call to IoAttachDeviceToDeviceStack, thus attaching itself over the previous layer (typically the
PDO).

We’ll see how to write filter drivers that take advantage of IoAttachDeviceToDeviceStack in chapter
13. hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 189

Figure 7-3: Hardware ID information

The value Service in figure 7-3 indirectly points to the actual driver at
HKLM\System\CutrrentControlSet\Services\{ServiceName} where all drivers must be
registered.

The filter device objects are loaded as well, if they are registered correctly in the Registry. Lower filters
(below the FDO) load in order, from the bottom. Each filter driver loaded creates its own device object and
attaches it on top of the previous layer. Upper filters work the same way but are loaded after the FDO. All
this means that with operational P&P devnodes, there are at least two layers - PDO and FDO, but there
could be more if filters are involved. We’ll look at basic filter development for hardware-based drivers in
chapter 13.

Full discussion of Plug & Play and the exact way this kind of devnode is built is beyond the scope of this
book. The previous description is incomplete and glances over some details, but it should give you the
basic idea. Every devnode is built from the bottom up, regardless of whether it is related to hardware or
not.

Lower filters are searched in two locations: the hardware ID key shown in figure 7-3 and in the correspond-
ing class based on the ClassGuid value listed under HKLM\System\CurrentControlSet\Control\Classes.
The value name itself is LowerFilters and is a multiple string value holding service names, pointing to

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 190

the same Services key. Upper filters are searched in a similar manner, but the value name is UpperFilters.
Figure 7-4 shows the registry settings for the DiskDrive class, which has a lower filter and an upper filter.

Figure 7-4: The DiskDrive class key

IRP Flow

Figure 7-2 shows an example devnode, whether related to hardware or not. An IRP is created by one of
the managers in the Executive - for most of our drivers that is the I/O Manager.

The manager creates an IRP with its associated IO_STACK_LOCATIONs - six in the example in figure 7-2.
The manager initializes the main IRP structure and the first I/O stack location only. Then it passes the
IRP’s pointer to the uppermost layer.

A driver receives the IRP in its appropriate dispatch routine. For example, if this is a Read IRP, then the
driver will be called in its IRP_MJ_READ index of its MajorFunction array from its driver object. At this
point, a driver has several options when dealing with IRP:

• Pass the request down - if the driver’s device is not the last device in the devnode, the driver can
pass the request along if it’s not interesting for the driver. This is typically done by a filter driver
that receives a request that it’s not interested in, and in order not to hurt the functionality of the
device (since the request is actually destined for a lower-layer device), the driver can pass it down.
This must be done with two calls:

– Call IoSkipCurrentIrpStackLocation to make sure the next device in line is going to see
the same information given to this device - it should see the same I/O stack location.

– Call IoCallDriver passing the lower device object (which the driver received at the time it
called IoAttachDeviceToDeviceStack) and the IRP.

Before passing the request down, the driver must prepare the next I/O stack location with proper infor-
mation. Since the I/O manager only initializes the first I/O stack location, it’s the responsibility of each
driver to initialize the next one. One way to do that is to call IoCopyIrpStackLocationToNext before
calling IoCallDriver. This works, but is a bit wasteful if the driver just wants the lower layer to see the
same information. Calling IoSkipCurrentIrpStackLocation is an optimization which decrements the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 191

current I/O stack location pointer inside the IRP, which is later incremented by IoCallDriver, so the
next layer sees the same IO_STACK_LOCATION this driver has seen. This decrement/increment dance is
more efficient than making an actual copy.

• Handle the IRP fully - the driver receiving the IRP can just handle the IRP without propagating it
down by eventually calling IoCompleteRequest. Any lower devices will never see the request.

• Do a combination of the above options - the driver can examine the IRP, do something (such as log
the request), and then pass it down. Or it can make some changes to the next I/O stack location, and
then pass the request down.

• Pass the request down (with or without changes) and be notified when the request completes by
a lower layer device - Any layer (except the lowest one) can set up an I/O completion routine by
calling IoSetCompletionRoutine before passing the request down. When one of the lower layers
completes the request, the driver’s completion routine will be called.

• Start some asynchronous IRP handling - the driver maywant to handle the request, but if the request
is lengthy (typical of a hardware driver, but also could be the case for a software driver), the driver
may mark the IRP as pending by calling IoMarkIrpPending and return a STATUS_PENDING from
its dispatch routine. Eventually, it will have to complete the IRP.

Once some layer calls IoCompleteRequest, the IRP turns around and starts “bubbling up” towards the
originator of the IRP (typically one of the I/O System Managers). If completion routines have been regis-
tered, they will be invoked in reverse order of registration.

In most drivers in this book, layering will not be considered, since the driver is most likely the single
device in its devnode. The driver will handle the request then and there or handle it asynchronously; it
will not pass it down, as there is no device underneath.

We’ll discuss other aspects of IRP handling in filter drivers, including completion routines, in chapter 13.

IRP and I/O Stack Location

Figure 7-5 shows some of the important fields in an IRP.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 192

Figure 7-5: Important fields of the IRP structure

Here is a quick rundown of these fields:

• IoStatus - contains the Status (NT_STATUS) of the IRP and an Information field. The Information
field is a polymorphic one, typed as ULONG_PTR (32 or 64-bit integer), but its meaning depends on the
type of IRP. For example, for Read and Write IRPs, its meaning is the number of bytes transferred
in the operation.

• UserBuffer - contains the raw buffer pointer to the user’s buffer for relevant IRPs. Read and Write
IRPs, for instance, store the user’s buffer pointer in this field. In DeviceIoControl IRPs, this points
to the output buffer provided in the request.

• UserEvent - this is a pointer to an event object (KEVENT) that was provided by a client if the call is
asynchronous and such an event was supplied. From user mode, this event can be provided (with a
HANDLE) in the OVERLAPPED structure that is mandatory for invoking I/O operations asynchronously.

• AssociatedIrp - this union holds three members, only one (at most) of which is valid:

* SystemBuffer - the most often used member. This points to a system-allocated non-paged pool buffer
used for Buffered I/O operations. See the section “Buffered I/O” later in this chapter for the details.
* MasterIrp - A pointer to a “master” IRP, if this IRP is an associated IRP. This idea is supported by the
I/O manager, where one IRP is a “master” that may have several “associated” IRPs. Once all the associated
IRPs complete, the master IRP is completed automatically. MasterIrp is valid for an associated IRP - it

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 193

points to the master IRP.
* IrpCount - for the master IRP itself, this field indicates the number of associated IRPs associated with
this master IRP.

Usage of master and associated IRPs is pretty rare. We will not be using this mechanism in this book.

• Cancel Routine - a pointer to a cancel routine that is invoked (if not NULL) if the driver is asked to
can cel the IRP, such as with the user mode functions CancelIo and CancelIoEx. Software drivers
rarely need cancellation routines, so we will not be using those in most examples.

• MdlAddress - points to an optional Memory Descriptor List (MDL). An MDL is a kernel data
structure that knows how to describe a buffer in RAM. MdlAddress is used primarily with Direct
I/O (see the section “Direct I/O” later in this chapter).

Every IRP is accompanied by one or more IO_STACK_LOCATIONs. Figure 7-6 shows the important fields in
an IO_STACK_LOCATION.

Figure 7-6: Important fields of the IO_STACK_LOCATION structure

Here’s a rundown of the fields shown in figure 7-6:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 194

• MajorFunction - this is the major function of the IRP (IRP_MJ_CREATE, IRP_MJ_READ, etc.). This
field is sometimes useful if the driver points more than onemajor function code to the same handling
routine. In that routine, the driver may want to distinguish between the major function codes using
this field.

• MinorFunction - some IRP types have minor functions. These are IRP_MJ_PNP, IRP_MJ_POWER and
IRP_MJ_SYSTEM_CONTROL (WMI). Typical code for these handlers has a switch statement based on
the MinorFunction. We will not be using these types of IRPs in this book, except in the case of filter
drivers for hardware-based devices, which we’ll examine in some detail in chapter 13.

• FileObject - the FILE_OBJECT associated with this IRP. Not needed in most cases, but is available
for dispatch routines that need it.

• DeviceObject - the device object associated with this IRP. Dispatch routines receive a pointer to
this, so typically accessing this field is not required.

• CompletionRoutine - the completion routine that is set for the previous (upper) layer (set with
IoSetCompletionRoutine), if any.

• Context - the argument to pass to the completion routine (if any).
• Parameters - this monster union contains multiple structures, each valid for a particular operation.
For example, in a Read (IRP_MJ_READ) operation, the Parameters.Read structure field should be
used to get more information about the Read operation.

The current I/O stack location obtained with IoGetCurrentIrpStackLocation hosts most of the param-
eters of the request in the Parameters union. It’s up to the driver to access the correct structure, as we’ve
already seen in chapter 4 and will see again in this and subsequent chapters.

Viewing IRP Information

While debugging or analyzing kernel dumps, a couple of commands may be useful for searching or
examining IRPs.

The !irpfind command can be used to find IRPs - either all IRPs, or IRPs that meet certain criteria. Using
!irpfind without any arguments searches the non-paged pool(s) for all IRPs. Check out the debugger
documentation on how to specify specific criteria to limit the search. Here’s an example of some output
when searching for all IRPs:

lkd> !irpfind

Unable to get offset of nt!_MI_VISIBLE_STATE.SpecialPool

Unable to get value of nt!_MI_VISIBLE_STATE.SessionSpecialPool

Scanning large pool allocation table for tag 0x3f707249 (Irp?) (ffffbf0a8761000\

0 : ffffbf0a87910000)

Irp [Thread] irpStack: (Mj,Mn) DevObj [Driver\

] MDL Process

ffffbf0aa795ca30 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

ffffbf0a9a8ef010 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 195

System\Ntfs]

ffffbf0a8e68ea20 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

ffffbf0a90deb710 [ffffbf0a808a1080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

ffffbf0a99d1da90 [0000000000000000] Irp is complete (CurrentLocation 10 > Stack\

Count 9)

ffffbf0a74cec940 [0000000000000000] Irp is complete (CurrentLocation 8 > StackC\

ount 7)

ffffbf0aa0640a20 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

ffffbf0a89acf4e0 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

ffffbf0a89acfa50 [ffffbf0a7fcde080] irpStack: (c, 2) ffffbf0a74d20050 [\File\

System\Ntfs]

(truncated)

Faced with a specific IRP, the command !irp examines the IRP, providing a nice overview of its data. As
always, the dt command can be used with the nt!_IRP type to look at the entire IRP structure. Here’s an
example of one IRP viewed with !irp:

kd> !irp ffffbf0a8bbada20

Irp is active with 13 stacks 12 is current (= 0xffffbf0a8bbade08)

No Mdl: No System Buffer: Thread ffffbf0a7fcde080: Irp stack trace.

cmd flg cl Device File Completion-Context

[N/A(0), N/A(0)]

0 0 00000000 00000000 00000000-00000000

Args: 00000000 00000000 00000000 00000000

[N/A(0), N/A(0)]

0 0 00000000 00000000 00000000-00000000

(truncated)

Args: 00000000 00000000 00000000 00000000

[N/A(0), N/A(0)]

0 0 00000000 00000000 00000000-00000000

Args: 00000000 00000000 00000000 00000000

>[IRP_MJ_DIRECTORY_CONTROL(c), N/A(2)]

0 e1 ffffbf0a74d20050 ffffbf0a7f52f790 fffff8015c0b50a0-ffffbf0a91d99010 Su\

ccess Error Cancel pending

\FileSystem\Ntfs

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 196

Args: 00004000 00000051 00000000 00000000

[IRP_MJ_DIRECTORY_CONTROL(c), N/A(2)]

0 0 ffffbf0a60e83dc0 ffffbf0a7f52f790 00000000-00000000

\FileSystem\FltMgr

Args: 00004000 00000051 00000000 00000000

The !irp commands lists the I/O stack locations and the information stored in them. The current I/O stack
location is marked with a > symbol (see the IRP_MJ_DIRECTORY_CONTROL line above).

The details for each IO_STACK_LOCATION are as follows (in order):

• first line:
– Major function code (e.g. IRP_MJ_DEVICE_CONTROL).
– Minor function code.

• second line:
– Flags (mostly unimportant)
– Control flags
– Device object pointer
– File object pointer
– Completion routine (if any)
– Completion context (for the completion routine)
– Success, Error, Cancel indicate the IRP completion cases where the completion routine would
be invoked

– “pending” if the IRP was marked as pending (SL_PENDING_RETURNED flag is set in the Control
flags)

• Driver name for that layer
• “Args” line:

– The value of Parameters.Others.Argument1 in the I/O stack location. Essentially the first
pointer-size member in the Parameters union.

– The value of Parameters.Others.Argument2 in the I/O stack location (the second pointer-
size member in the Parameters union)

– Device I/O control code (if IRP_MJ_DEVICE_CONTROL or IRP_MJ_INTERNAL_DEVICE_CONTROL).
It’s shown as a DML link that invokes the !ioctldecode command to decode the control
code (more on device I/O control codes later in this chapter). For other major function codes,
shows the third pointer-size member (Parameters.Others.Argument3)

– The forth pointer-size member (Parameters.Others.Argument4)

The !irp command accepts an optional details argument. The default is zero, which provides the output
described above (considered a summary). Specifying 1 provides additional information in a concrete form.
Here is an example for an IRP targeted towards the console driver (you can locate those easily by looking
for cmd.exe processes):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 197

lkd> !irp ffffdb899e82a6f0 1

Irp is active with 2 stacks 1 is current (= 0xffffdb899e82a7c0)

No Mdl: System buffer=ffffdb89c1c84ac0: Thread ffffdb89b6efa080: Irp stack tr\

ace.

Flags = 00060030

ThreadListEntry.Flink = ffffdb89b6efa530

ThreadListEntry.Blink = ffffdb89b6efa530

IoStatus.Status = 00000000

IoStatus.Information = 00000000

RequestorMode = 00000001

Cancel = 00

CancelIrql = 0

ApcEnvironment = 00

UserIosb = 73d598f420

UserEvent = 00000000

Overlay.AsynchronousParameters.UserApcRoutine = 00000000

Overlay.AsynchronousParameters.UserApcContext = 00000000

Overlay.AllocationSize = 00000000 - 00000000

CancelRoutine = fffff8026f481730

UserBuffer = 00000000

&Tail.Overlay.DeviceQueueEntry = ffffdb899e82a768

Tail.Overlay.Thread = ffffdb89b6efa080

Tail.Overlay.AuxiliaryBuffer = 00000000

Tail.Overlay.ListEntry.Flink = ffff8006d16437b8

Tail.Overlay.ListEntry.Blink = ffff8006d16437b8

Tail.Overlay.CurrentStackLocation = ffffdb899e82a7c0

Tail.Overlay.OriginalFileObject = ffffdb89c1c0a240

Tail.Apc = 8b8b7240

Tail.CompletionKey = 15f8b8b7240

cmd flg cl Device File Completion-Context

>[N/A(f), N/A(7)]

0 1 00000000 00000000 00000000-00000000 pending

Args: ffff8006d1643790 15f8d92c340 0xa0e666b0 ffffdb899e7a53c0

[IRP_MJ_DEVICE_CONTROL(e), N/A(0)]

5 0 ffffdb89846f9e10 ffffdb89c1c0a240 00000000-00000000

\Driver\condrv

Args: 00000000 00000060 0x500016 00000000

Additionally, specifying detail value of 4 shows Driver Verifier information related to the IRP (if the driver
handling this IRP is under the verifier’s microscope). Driver Verifier will be discussed in chapter 13.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 198

Dispatch Routines

In chapter 4, we have seen an important aspect of DriverEntry - setting up dispatch routines. These are
the functions connected with major function codes. The MajorFunction field in DRIVER_OBJECT is the
array of function pointers index by the major function code.

All dispatch routines have the same prototype, repeated here for convenience using the DRIVER_DISPATCH
typedef from the WDK (somewhat simplified for clarity):

typedef NTSTATUS DRIVER_DISPATCH (

In PDEVICE_OBJECT DeviceObject,

Inout PIRP Irp);

The relevant dispatch routine (based on the major function code) is the first routine in a driver that sees
the request. Normally, it’s called in the requesting thread context, i.e. the thread that called the relevant
API (e.g. ReadFile) in IRQL PASSIVE_LEVEL (0). However, it’s possible that a filter driver sitting on top
of this device sent the request down in a different context - it may be some other thread unrelated to the
original requestor and even in higher IRQL, such as DISPATCH_LEVEL (2). Robust drivers need to be ready
to deal with this kind of situation, even though for software drivers this “inconvenient” context is rare.
We’ll discuss the way to properly deal with this situation in the section “Accessing User Buffers”, later in
this chapter.

The first thing a typical dispatch routine does is check for errors. For example, read and write operations
contain buffers - do these buffers have appropriate size? For DeviceIoControl, there is a control code
in addition to potentially two buffers. The driver needs to make sure the control code is something it
recognizes. If any error is identified, the IRP is typically completed immediately with an appropriate status.

If all checks turn up ok, then the driver can deal with performing the requested operation.

Here is the list of the most common dispatch routines for a software driver:

• IRP_MJ_CREATE - corresponds to a CreateFile call from user mode or ZwCreateFile in kernel
mode. This major function is essentially mandatory, otherwise no client will be able to open a handle
to a device controlled by this driver. Most drivers just complete the IRP with a success status.

• IRP_MJ_CLOSE - the opposite of IRP_MJ_CREATE. Called by CloseHandle from user mode or
ZwClose from kernel mode when the last handle to the file object is about to be closed. Most drivers
just complete the request successfully, but if something meaningful was done in IRP_MJ_CREATE,
this is where it should be undone.

• IRP_MJ_READ - corresponds to a read operation, typically invoked from user mode by ReadFile or
kernel mode with ZwReadFile.

• IRP_MJ_WRITE - corresponds to a write operation, typically invoked from user mode by WriteFile
or kernel mode with ZwWriteFile.

• IRP_MJ_DEVICE_CONTROL - corresponds to the DeviceIoControl call from user mode or

ZwDeviceIoControlFile from kernel mode (there are other APIs in the kernel that can generate IRP_-
MJ_DEVICE_CONTROL IRPs).

• IRP_MJ_INTERNAL_DEVICE_CONTROL - similar to IRP_MJ_DEVICE_CONTROL, but only available to
kernel callers.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 199

Completing a Request

Once a driver decides to handle an IRP (meaning it’s not passing down to another driver), it must eventually
complete it. Otherwise, we have a leak on our hands - the requesting thread cannot really terminate and
by extension, its containing process will linger on as well, resulting in a “zombie process”.

Completing a request means calling IoCompleteRequest after setting the request status and extra infor-
mation. If the completion is done in the dispatch routine itself (a common case for software drivers), the
routine must return the same status that was placed in the IRP.

The following code snippet shows how to complete a request in a dispatch routine:

NTSTATUS MyDispatchRoutine(PDEVICE_OBJECT, PIRP Irp) {

//...

Irp->IoStatus.Status = STATUS_XXX;

Irp->IoStatus.Information = bytes; // depends on request type

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return STATUS_XXX;

}

Since the dispatch routine must return the same status as was placed in the IRP, it’s tempting
to write the last statement like so: return Irp->IoStatus.Status; This, however, will likely
result in a system crash. Can you guess why?

After the IRP is completed, touching any of its members is a bad idea. The IRP has probably
already been freed and you’re touching deallocated memory. It can actually be worse, since
another IRP may have been allocated in its place (this is common), and so the code may return
the status of some random IRP.

The Information field should be zero in case of an error (a failure status). Its exact meaning for a successful
operation depends on the type of IRP.

The IoCompleteRequest API accepts two arguments: the IRP itself and an optional value to temporarily
boost the original thread’s priority (the thread that initiated the request in the first place). In most cases,
for software drivers, the thread in question is the executing thread, so a thread boost is inappropriate. The
value IO_NO_INCREMENT is defined as zero, so no increment in the above code snippet.

However, the driver may choose to give the thread a boost, regardless of whether it’s the calling thread
or not. In this case, the thread’s priority jumps with the given boost, and then it’s allowed to execute one
quantum with that new priority before the priority decreases by one, it can then get another quantum
with the reduced priority, and so on, until its priority returns to its original level. Figure 7-7 illustrates this
scenario.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 200

Figure 7-7: Thread priority boost and decay

The thread’s priority after the boost can never go above 15. If it’s supposed to, it will be 15. If
the original thread’s priority is above 15 already, boosting has no effect.

Accessing User Buffers

A given dispatch routine is the first to see the IRP. Some dispatch routines, mainly IRP_MJ_READ, IRP_MJ_-
WRITE and IRP_MJ_DEVICE_CONTROL accept buffers provided by a client - in most cases from user mode.
Typically, a dispatch routine is called in IRQL 0 and in the requesting thread context, which means the
buffers pointers provided by user mode are trivially accessible: the IRQL is 0, so page faults are handled
normally, and the thread is the requestor, so the pointers are valid in this process context.

However, there could be issues. As we’ve seen in chapter 6, even in this convenient context (requesting
thread and IRQL 0), it’s possible for another thread in the client’s process to free the passed-in buffer(s),
before the driver gets a chance to examine them, and so cause an access violation. The solution we’ve used
in chapter 6 is to use a __try / __except block to handle any access violation by returning failure to the
client.

In some cases, even that is not enough. For example, if we have some code running at IRQL 2 (such as a
DPC running as a result of timer expiration), we cannot safely access the user’s buffers in this context. In
general, there are two potential issues here:

• IRQL of the calling CPU is 2 (or higher), meaning no page fault handling can occur.
• The thread calling the driver may be some arbitrary thread, and not the original requestor. This
means that the buffer pointer(s) provided are meaningless, since the wrong process address space is
accessible.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 201

Using exception handling in such a case will not work as expected, because we’ll be accessing some
memory location that is essentially invalid in this random process context. Even if the access succeeds
(because that memory happens to be allocated in this random process and is resident in RAM), you’ll be
accessing random memory, and certainly not the original buffer provided to the client.

All thismeans that theremust be some goodway to access the original user’s buffer in such an inconvenient
context. In fact, there are two such ways provided by the I/O manager for this purpose, called Buffered I/O
and Direct I/O. In the next two sections, we’ll see what each of these schemes mean and how to use them.

Some data structures are always safe to access, since they are allocated from non-paged pool
(and are in system space). Common examples are device objects (createdwith IoCreateDevice)
and IRPs.

Buffered I/O

Buffered I/O is the simplest of the two ways. To get support for Buffered I/O for Read andWrite operations,
a flag must be set on the device object like so:

DeviceObject->Flags |= DO_BUFFERED_IO; // DO = Device Object

DeviceObject is the allocated pointer from a previous call to IoCreateDevice (or IoCreateDeviceSecure).

For IRP_MJ_DEVICE_CONTROL buffers, see the section “User Buffers for IRP_MJ_DEVICE_CONTROL” later
in this chapter.

Here are the steps taken by the I/O Manager and the driver when a read or write request arrives:

1. The I/O Manager allocates a buffer from non-paged pool with the same size as the user’s buffer.
It stores the pointer to this new buffer in the AssociatedIrp->SystemBuffer member of the
IRP. (The buffer size can be found in the current I/O stack location’s Parameters.Read.Length
or Parameters.Write.Length.)

2. For a write request, the I/O Manager copies the user’s buffer to the system buffer.
3. Only now the driver’s dispatch routine is called. The driver can use the system buffer pointer directly

without any checks, because the buffer is in system space (its address is absolute - the same from
any process context), and in any IRQL, because the buffer is allocated from non-paged pool, so it
cannot be paged out.

4. Once the driver completes the IRP (IoCompleteRequest), the I/O manager (for read requests)
copies the system buffer back to the user’s buffer (the size of the copy is determined by the
IoStatus.Information field in the IRP set by the driver).

5. Finally, the I/O Manager frees the system buffer.

You may be wondering how does the I/O Manager copy back the system buffer to the original
user’s buffer from IoCompleteRequest. This function can be called from any thread, in IRQL
<= 2. The way it’s done is by queuing a special kernel APC to the thread that requested the
operation. Once this thread is scheduled for execution, the first thing it does is run this APC
which performs the actual copying. The requesting thread is obviously in the correct process
context, and the IRQL is 1, so page faults can be handled normally.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 202

Figures 7-8a to 7-8e illustrate the steps taken with Buffered I/O.

Figure 7-8a: Buffered I/O: initial state

Figure 7-8b: Buffered I/O: system buffer allocated

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 203

Figure 7-8c: Buffered I/O: driver accesses system buffer

Figure 7-8d: Buffered I/O: on IRP completion, I/O manager copies buffer back (for read)

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 204

Figure 7-8e: Buffered I/O: final state - I/O manager frees system buffer

Buffered I/O has the following characteristics:

• Easy to use - just specify the flag in the device object, and everything else is taken care of by the
I/O Manager.

• It always involves a copy - which means it’s best used for small buffers (typically up to one page).
Large buffers may be expensive to copy. In this case, the other option, Direct I/O, should be used
instead.

Direct I/O

The purpose of Direct I/O is to allow access to a user’s buffer in any IRQL and any thread but without any
copying going around.

For read and write requests, selecting Direct I/O is done with a different flag of the device object:

DeviceObject->Flags |= DO_DIRECT_IO;

As with Buffered I/O, this selection only affects read and write requests. For DeviceIoControl see the
next section.

Here are the steps involved in handling Direct I/O:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 205

1. The I/O Manager first makes sure the user’s buffer is valid and then pages it into physical memory
(if it wasn’t already there).

2. It then locks the buffer in memory, so it cannot be paged out until further notice. This solves one
of the issues with buffer access - page faults cannot happen, so accessing the buffer in any IRQL is
safe.

3. The I/O Manager builds aMemory Descriptor List (MDL), a data structure that describes a buffer in
physical memory. The address of this data structure is stored in the MdlAddress field of the IRP.

4. At this point, the driver gets the call to its dispatch routine. The user’s buffer, although locked in
RAM, cannot be accessed from an arbitrary thread just yet. When the driver requires access to
the buffer, it must call a function that maps the same user buffer to a system address, which by
definition is valid in any process context. So essentially, we get two mappings to the same memory
buffer. One is from the original address (valid only in the context of the requestor process) and the
other in system space, which is always valid. The API to call is MmGetSystemAddressForMdlSafe,
passing the MDL built by the I/O Manager. The return value is the system address.

5. Once the driver completes the request, the I/O Manager removes the second mapping (to system
space), frees the MDL, and unlocks the user’s buffer, so it can be paged normally just like any other
user-mode memory.

TheMDL is in actually a list of MDL structures, each one describing a piece of the buffer that is contigous
in physical memory. Remember, that a buffer that is contigous in virtual memory is not necessary
contigous in physical memory (the smallest piece is a page size). In most cases, we don’t need to care
about this detail. One case where this matters is inDirect Memory Access (DMA) operations. Fortunately,
this is in the realm of hardware-based drivers.

Figures 7-9a to 7-9f illustrate the steps taken with Direct I/O.
hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 206

Figure 7-9a: Direct I/O: initial state

Figure 7-9b: Direct I/O: I/O manager faults buffer’s pages to RAM and locks them

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 207

Figure 7-9c: Direct I/O: the MDL describing the buffer is stored in the IRP

Figure 7-9d: Direct I/O: the driver double-maps the buffer to a system address

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 208

Figure 7-9e: Direct I/O: the driver accesses the buffer using the system address

Figure 7-9f: Direct I/O: when the IRP is completed, the I/O manager frees the mapping, the MDL and unlocks the buffer

Notice there is no copying at all. The driver just reads/writes to the user’s buffer directly, using the system
address.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 209

Locking the user’s buffer is done with the MmProbeAndLockPages API, fully documented in
the WDK. Unlocking is done with MmUnlockPages, also documented. This means a driver can
use these routines outside the narrow context of Direct I/O.

Calling MmGetSystemAddressForMdlSafe can be done multiple times. The MDL stores a flag
indicating whether the system mapping has already been done. If so, it just returns the existing
pointer.

Here is the prototype of MmGetSystemAddressForMdlSafe:

PVOID MmGetSystemAddressForMdlSafe (

Inout PMDL Mdl,

In ULONG Priority);

The function is implemented inline within the wdm.h header by calling the more generic
MmMapLockedPagesSpecifyCache function:

PVOID MmGetSystemAddressForMdlSafe(PMDL Mdl, ULONG Priority) {

if (Mdl->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA|MDL_SOURCE_IS_NONPAGED_POOL)) {

return Mdl->MappedSystemVa;

} else {

return MmMapLockedPagesSpecifyCache(Mdl, KernelMode, MmCached,

NULL, FALSE, Priority);

}

}

MmGetSystemAddressForMdlSafe accepts the MDL and a page priority (MM_PAGE_PRIORITY enumera-
tion).Most drivers specify NormalPagePriority, but there is also LowPagePriority and HighPagePriority.
This priority gives a hint to the system of the importance of the mapping in lowmemory conditions. Check
the WDK documentation for more information.

If MmGetSystemAddressForMdlSafe fails, it returns NULL. This means the system is out of system page
tables or very low on system page tables (depends on the priority argument above). This should be a
rare occurrence, but still can happen in low memory conditions. A driver must check for this; if NULL is
returned, the driver should complete the IRP with the status STATUS_INSUFFICIENT_RESOURCES.

There is a similar function, called MmGetSystemAddressForMdl, which if it fails, crashes the
system. Do not use this function.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 210

You may be wondering why doesn’t the I/O manager call MmGetSystemAddressForMdlSafe automati-
cally, which would be simple enough to do. This is an optimization, where the driver may not need to
call this function at all if there is any error in the request, so that the mapping doesn’t have to occur at
all.

Drivers that don’t set either of the flags DO_BUFFERED_IO nor DO_DIRECT_IO in the device object flags
implicitly use Neither I/O, which simply means the driver doesn’t get any special help from the I/O
manager, and it’s up to the driver to deal with the user’s buffer.

User Buffers for IRP_MJ_DEVICE_CONTROL

The last two sections discussed Buffered I/O and Direct I/O as they pertain to read and write requests.
For IRP_MJ_DEVICE_CONTROL (and IRP_MJ_INTERNAL_DEVICE_CONTROL), the buffering access method is
supplied on a control code basis. Here is the prototype of the user-mode API DeviceIoControl (it’s similar
with the kernel function ZwDeviceIoControlFile):

BOOL DeviceIoControl(

HANDLE hDevice, // handle to device or file

DWORD dwIoControlCode, // IOCTL code (see <winioctl.h>)

PVOID lpInBuffer, // input buffer

DWORD nInBufferSize, // size of input buffer

PVOID lpOutBuffer, // output buffer

DWORD nOutBufferSize, // size of output buffer

PDWORD lpdwBytesReturned, // # of bytes actually returned

LPOVERLAPPED lpOverlapped); // for async. operation

There are three important parameters here: the I/O control code, and optional two buffers designated
“input” and “output”. As it turns out, the way these buffers are accessed depends on the control code,
which is very convenient, because different requests may have different requirements related to accessing
the user’s buffer(s).

The control code defined by a driver must be built with the CTL_CODE macro, defined in the WDK and
user-mode headers, defined like so:

#define CTL_CODE(DeviceType, Function, Method, Access) (\

((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))

The first parameter, DeviceType can be one of a set of constants defined by Microsoft for various known
device types (such as FILE_DEVICE_DISK and FILE_DEVICE_KEYBOARD). For custom devices (like the ones
we are writing), it can be any value, but the documentation states that theminimum value for custom codes
should be 0x8000.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 211

The second parameter, Function, is a running index, that should be different between multiple control
codes defined by the same driver. If all other components of the macro are same (possible), at least the
Function would be a differentating factor. Similarly to device type, the official documentation states that
custom devices should use values starting from 0x800.

The third parameter (Method) is the key to selecting the buffering method for accessing the input and
output buffers provided with DeviceIoControl. Here are the options:

• METHOD_NEITHER - this value means no help is required of the I/O manager, so the driver is left
dealing with the buffers on its own. This could be useful, for instance, if the particular code does
not require any buffer - the control code itself is all the information needed - it’s best to let the I/O
manager know that it does not need to do any additional work.

– In this case, the pointer to the user’s input buffer is stored in the current I/O stack location’s
Parameters.DeviceIoControl.Type3InputBuffer field, and the output buffer is stored in
the IRP’s UserBuffer field.

• METHOD_BUFFERED - this value indicates Buffered I/O for both the input and output buffer. When the
request starts, the I/O manager allocates the system buffer from non-paged pool with the size that is
the maximum of the lengths of the input and output buffers. It then copies the input buffer to the sys-
tem buffer. Only now the IRP_MJ_DEVICE_CONTROL dispatch routine is invoked. When the request
completes, the I/O manager copies the number of bytes indicated with the IoStatus.Information
field in the IRP to the user’s output buffer.

– The system buffer pointer is at the usual location: AssociatedIrp.SystemBuffer inside the
IRP structure.

• METHOD_IN_DIRECT and METHOD_OUT_DIRECT - contrary to intuition, both of these values mean the
same thing as far as buffering methods are concerned: the input buffer uses Buffered I/O and the
output buffer uses Direct I/O. The only difference between these two values is whether the output
buffer can be read (METHOD_IN_DIRECT) or written (METHOD_OUT_DIRECT).

The last bullet indicates that the output buffer can also be treated as input by using METHOD_-
IN_DIRECT.

Table 7-1 summarizes these buffering methods.

Table 7-1: Buffering method based on control code Method parameter

Method Input buffer Output buffer

METHOD_NEITHER Neither Neither

METHOD_BUFFERED Buffered Buffered

METHOD_IN_DIRECT Buffered Direct

METHOD_OUT_DIRECT Buffered Direct

Finally, the Access parameter to the macro indicates the direction of data flow. FILE_WRITE_ACCESS

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 212

means from the client to the driver, FILE_READ_ACCESSmeans the opposite, and FILE_ANY_ACCESSmeans
bi-directional access (the input and output buffers are used). You should always use FILE_ANY_ACCESS.
Beside simplifying the control code building, you guarantee that if later on, once the driver is already
deployed, you may want to use the other buffer, you wouldn’t need to change the Access parameter, and
so not disturb existing clients that would not know about the control code change.

If a control code is built with METHOD_NEITHER, the I/O manager does nothing to help with
accessing the buffer(s). The values for the input and output buffer pointers provided by the
client are copied as-is to the IRP. No checking is done by the I/O manager to make sure these
pointers point to valid memory. A driver should not use these pointers as memory pointers, but
they can be used as two arbitrary values propagating to the driver that may mean something.

Putting it All Together: The Zero Driver

In this section, we’ll use what we’ve learned in this (and earlier) chapter and build a driver and a client
application. The driver is named Zero and has the following characteristics:

• For read requests, it zeros out the provided buffer.
• For write requests, it just consumes the provided buffer, similar to a classic null device.

The driver will use Direct I/O so as not to incur the overhead of copies, as the buffers provided by the
client can potentially be very large.

We’ll start the project by creating an “Empty WDM Project” in Visual Studio and and name it Zero. Then
we’ll delete the created INF file, resulting in an empty project, just like in previous examples.

Using a Precompiled Header

One technique that we can use that is not specific to driver development, but is generally useful, is using
a precompiled header. Precompiled headers is a Visual Studio feature that helps with faster compilation
times. The precompiled header is a header file that has #include statements for headers that rarely change,
such as ntddk.h for drivers. The precompiled header is compiled once, stored in an internal binary format,
and used in subsequent compilations, which become considerably faster.

Many user mode projects created by Visual Studio already use precompiled headers. Kernel-
mode projects provided by the WDK templates currently don’t use precompiled headers. Since
we’re starting with an empty project, we have to set up precompiled headers manually anyway.

Follow these steps to create and use a precompiled header:

• Add a new header file to the project and call it pch.h. This file will serve as the precompiled header.
Add all rarely-changing #includes here:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 213

// pch.h

#pragma once

#include <ntddk.h>

• Add a source file named pch.cpp and put a single #include in it: the precompiled header itself:

#include "pch.h"

• Now comes the tricky part. Letting the compiler know that pch.h is the precompiled header and
pch.cpp is the one creating it. Open project properties, select All Configurations and All Platforms
so you won’t need to configure every configuration/platform separately, navigate to C/C++ / Pre-
compiled Headers and set Precompiled Header to Use and the file name to “pch.h” (see figure 7-10).
Click OK and to close the dialog box.

Figure 7-10: Setting precompiled header for the project

• The pch.cpp file should be set as the creator of the precompiled header. Right click this file in Solution
Explorer, and select Properties. Navigate toC/C++ / Precompiled Headers and set Precompiled Header
to Create (see figure 7-11). Click OK to accept the setting.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 214

Figure 7-10: Setting precompiled header for pch.cpp

From this point on, every C/CPP file in the project must #include "pch.h" as the first thing in the file.
Without this include, the project will not compile.

Make sure there is nothing before this #include "pch.h" in a source file. Anything before
this line does not get compiled at all!

The DriverEntry Routine

The DriveEntry routine for the Zero driver is very similar to the one we created for the driver in chapter
4. However, in chapter 4’s driver the code in DriverEntry had to undo any operation that was already done
in case of a later error. We had just two operations that could be undone: creation of the device object and
creation of the symbolic link. The Zero driver is similar, but we’ll create a more robust and less error-prone
code to handle errors during initialization. Let’s start with the basics of setting up an unload routine and
the dispatch routines:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 215

#define DRIVER_PREFIX "Zero: "

// DriverEntry

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = ZeroUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = ZeroCreateClose;

DriverObject->MajorFunction[IRP_MJ_READ] = ZeroRead;

DriverObject->MajorFunction[IRP_MJ_WRITE] = ZeroWrite;

Now we need to create the device object and symbolic link and handle errors in a more general and robust
way. The trick we’ll use is a do / while(false) block, which is not really a loop, but it allows getting out
of the block with a simple break statement in case something goes wrong:

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Zero");

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Zero");

PDEVICE_OBJECT DeviceObject = nullptr;

auto status = STATUS_SUCCESS;

do {

status = IoCreateDevice(DriverObject, 0, &devName, FILE_DEVICE_UNKNOWN,

0, FALSE, &DeviceObject);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create device (0x%08X)\n", status));

break;

}

// set up Direct I/O

DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create symbolic link (0x%08X)\n",

status));

break;

}

} while (false);

if (!NT_SUCCESS(status)) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 216

if (DeviceObject)

IoDeleteDevice(DeviceObject);

}

return status;

The pattern is simple: if an error occurs in any call, just break out of the “loop”. Outside the loop, check
the status, and if it’s a failure, undo any operations done so far. With this scheme in hand, it’s easy to add
more initializations (which we’ll need in more complex drivers), while keeping the cleanup code localized
and appearing just once.

It’s possible to use goto statements instead of the do / while(false) approach, but as the great Dijkstra
wrote, “goto considered harmful”, so I tend to avoid it if I can.

Notice we’re also initializing the device to use Direct I/O for our read and write operations.

The Create and Close Dispatch Routines

Before we get to the actual implementation of IRP_MJ_CREATE and IRP_MJ_CLOSE (pointing to the same
function), let’s create a helper function that simplifies completing an IRP with a given status and informa-
tion:

NTSTATUS CompleteIrp(PIRP Irp,

NTSTATUS status = STATUS_SUCCESS,

ULONG_PTR info = 0) {

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = info;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

Notice the default values for the status and information. The Create/Close dispatch routine implementation
becomes almost trivial:

NTSTATUS ZeroCreateClose(PDEVICE_OBJECT, PIRP Irp) {

return CompleteIrp(Irp);

}

The Read Dispatch Routine

The Read routine is the most interesting. First we need to check the length of the buffer to make sure it’s
not zero. If it is, just complete the IRP with a failure status:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 217

NTSTATUS ZeroRead(PDEVICE_OBJECT, PIRP Irp) {

auto stack = IoGetCurrentIrpStackLocation(Irp);

auto len = stack->Parameters.Read.Length;

if (len == 0)

return CompleteIrp(Irp, STATUS_INVALID_BUFFER_SIZE);

Note that the length of the user’s buffer is provided through the Parameters.Read member inside the
current I/O stack location.

We have configured Direct I/O, so we need to map the locked buffer to system space using
MmGetSystemAddressForMdlSafe:

NT_ASSERT(Irp->MdlAddress); // make sure Direct I/O flag was set

auto buffer = MmGetSystemAddressForMdlSafe(Irp->MdlAddress, NormalPagePriority);

if (!buffer)

return CompleteIrp(Irp, STATUS_INSUFFICIENT_RESOURCES);

The functionality we need to implement is to zero out the given buffer. We can use a simple memset call
to fill the buffer with zeros and then complete the request:

memset(buffer, 0, len);

return CompleteIrp(Irp, STATUS_SUCCESS, len);

}

If you prefer a more “fancy” function to zero out memory, call RtlZeroMemory. It’s a macro, defined in
terms of memset.

It’s important to set the Information field to the length of the buffer. This indicates to the client the
number of bytes transferred in the operation (returned in the second to last parameter to ReadFile). This
is all we need for the read operation.

The Write Dispatch Routine

The write dispatch routine is even simpler. All it needs to do is complete the request with the buffer length
provided by the client (essentially swallowing the buffer):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 218

NTSTATUS ZeroWrite(PDEVICE_OBJECT, PIRP Irp) {

auto stack = IoGetCurrentIrpStackLocation(Irp);

auto len = stack->Parameters.Write.Length;

return CompleteIrp(Irp, STATUS_SUCCESS, len);

}

Note that we don’t even bother calling MmGetSystemAddressForMdlSafe, as we don’t need to access the
actual buffer. This is also the reason this call is not made beforehand by the I/O manager: the driver may
not even need it, or perhaps need it in certain conditions only; so the I/O manager prepares everything
(the MDL) and lets the driver decide when and if to map the buffer.

Test Application

We’ll add a new console application project to the solution to test the read and write operations.
Here is some simple code to test these operations:

int Error(const char* msg) {

printf("%s: error=%u\n", msg, ::GetLastError());

return 1;

}

int main() {

HANDLE hDevice = CreateFile(L"\\\\.\\Zero", GENERIC_READ | GENERIC_WRITE,

0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {

return Error("Failed to open device");

}

// test read

BYTE buffer[64];

// store some non-zero data

for (int i = 0; i < sizeof(buffer); ++i)

buffer[i] = i + 1;

DWORD bytes;

BOOL ok = ReadFile(hDevice, buffer, sizeof(buffer), &bytes, nullptr);

if (!ok)

return Error("failed to read");

if (bytes != sizeof(buffer))

printf("Wrong number of bytes\n");

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 219

// check that all bytes are zero

for (auto n : buffer)

if (n != 0) {

printf("Wrong data!\n");

break;

}

// test write

BYTE buffer2[1024]; // contains junk

ok = WriteFile(hDevice, buffer2, sizeof(buffer2), &bytes, nullptr);

if (!ok)

return Error("failed to write");

if (bytes != sizeof(buffer2))

printf("Wrong byte count\n");

CloseHandle(hDevice);

}

Read/Write Statistics

Let’s add some more functionality to the Zero driver. We may want to count the total bytes read/written
throughout the lifetime of the driver. A user-mode client should be able to read these statistics, and perhaps
even zero them out.

We’ll start by defining two global variables to keep track of the total number of bytes read/written (in
Zero.cpp):

long long g_TotalRead;

long long g_TotalWritten;

You could certainly put these in a structure for easier maintenance and extension. The long longC++ type
is a signed 64-bit value. You can add unsigned if you wish, or use a typedef such as LONG64 or ULONG64,
which would mean the same thing. Since these are global variables, they are zeroed out by default.

We’ll create a new file that contains information common to user-mode clients and the driver called
ZeroCommon.h. here is where we define the control codes we support, as well as data structures to be
shared with user-mode.

First, we’ll add two control codes: one for getting the stats and another for clearing them:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 220

#define DEVICE_ZERO 0x8022

#define IOCTL_ZERO_GET_STATS \

CTL_CODE(DEVICE_ZERO, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_ZERO_CLEAR_STATS \

CTL_CODE(DEVICE_ZERO, 0x801, METHOD_NEITHER, FILE_ANY_ACCESS)

The DEVICE_ZERO is defined as some number from 0x8000 as the documentation recommends. The func-
tion number starts with 0x800 and incremented with each control code. METHOD_BUFFERED is used for
getting the stats, as the size of the returned data is small (2 x 8 bytes). Clearing the stats requires no
buffers, so METHOD_NEITHER is selected.

Next, we’ll add a structure that can be used by clients (and the driver) for storing the stats:

struct ZeroStats {

long long TotalRead;

long long TotalWritten;

};

In DriverEntry, we add a dispatch routine for IRP_MJ_DEVICE_CONTROL like so:

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ZeroDeviceControl;

All the work is done in ZeroDeviceControl. First, some initialization:

NTSTATUS ZeroDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG_PTR len = 0;

The details for IRP_MJ_DEVICE_CONTROL are located in the current I/O stack location in the
Parameters.DeviceIoControl structure. The status is initialized to an error in case the control code
provided is unsupported. len keeps track of the number of valid bytes returned in the output buffer.

Implementing the IOCTL_ZERO_GET_STATS is done in the usual way. First, check for errors. If all goes well,
the stats are written to the output buffer:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 221

switch (dic.IoControlCode) {

case IOCTL_ZERO_GET_STATS:

{ // artificial scope so the compiler does not complain

// about defining variables skipped by a case

if (dic.OutputBufferLength < sizeof(ZeroStats)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

auto stats = (ZeroStats*)Irp->AssociatedIrp.SystemBuffer;

if (stats == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;

}

//

// fiil in the output buffer

//

stats->TotalRead = g_TotalRead;

stats->TotalWritten = g_TotalWritten;

len = sizeof(ZeroStats);

//

// change status to indicate success

//

status = STATUS_SUCCESS;

break;

}

Once out of the switch, the IRP would be completed. Here is the stats clearing Ioctl handling:

case IOCTL_ZERO_CLEAR_STATS:

g_TotalRead = g_TotalWritten = 0;

status = STATUS_SUCCESS;

break;

}

All that’s left to do is complete the IRP with whatever the status and length values are:

return CompleteIrp(Irp, status, len);

For easier viewing, here is the complete IRP_MJ_DEVICE_CONTROL handling:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 222

NTSTATUS ZeroDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG_PTR len = 0;

switch (dic.IoControlCode) {

case IOCTL_ZERO_GET_STATS:

{

if (dic.OutputBufferLength < sizeof(ZeroStats)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

auto stats = (ZeroStats*)Irp->AssociatedIrp.SystemBuffer;

if (stats == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;

}

stats->TotalRead = g_TotalRead;

stats->TotalWritten = g_TotalWritten;

len = sizeof(ZeroStats);

status = STATUS_SUCCESS;

break;

}

case IOCTL_ZERO_CLEAR_STATS:

g_TotalRead = g_TotalWritten = 0;

status = STATUS_SUCCESS;

break;

}

return CompleteIrp(Irp, status, len);

}

The stats have to be updated when data is read/written. It must be done in a thread safe way, as multiple
clients may bombard the driver with read/write requests. Here is the updated ZeroWrite function:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 7: The I/O Request Packet 223

NTSTATUS ZeroWrite(PDEVICE_OBJECT, PIRP Irp) {

auto stack = IoGetCurrentIrpStackLocation(Irp);

auto len = stack->Parameters.Write.Length;

// update the number of bytes written

InterlockedAdd64(&g_TotalWritten, len);

return CompleteIrp(Irp, STATUS_SUCCESS, len);

}

The change to ZeroRead is very similar.

Astute readers may question the safety of the Ioctl implementations. For example, is reading the total
number of bytes read/written with no multithreaded protection (while possible read/write operations
are in effect) a correct operation, or is it a data race? Technically, it’s a data race, as the driver might be
updating to the stats globals while some client is reading the values, that could result in torn reads. One
way to resolve that is by dispensing with the interlocked instructions and use a mutex or a fast mutex to
protect access to these variables. Alternatively, There are functions to deal with these scenario, such as
ReadAcquire64. Their implementation is CPU dependent. For x86/x64, they are actually normal reads,
as the processor provides safety against such torn reads. On ARM CPUs, this requires a memory barrier
to be inserted (memory barriers are beyond the scope of this book).

Save the number of bytes read/written to the Registry before the driver unloads. Read it back
when the driver loads.

Replace the Interlocked instructions with a fast mutex to protect access to the stats.

Here is some client code to retrieve these stats:

ZeroStats stats;

if (!DeviceIoControl(hDevice, IOCTL_ZERO_GET_STATS,

nullptr, 0, &stats, sizeof(stats), &bytes, nullptr))

return Error("failed in DeviceIoControl");

printf("Total Read: %lld, Total Write: %lld\n",

stats.TotalRead, stats.TotalWritten);

Summary

In this chapter, we learned how to handle IRPs, which drivers deal with all the time. Armed with this
knowledge, we can start leveraging more kernel functionality, starting with process and thread callbacks
in chapter 9. Before getting to that, however, there are more techniques and kernel APIs that may be useful
for a driver developer, described in the next chapter.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming
Techniques (Part 1)
In this chapter we’ll examine various techniques of various degrees of usefulness to driver developers.

In this chapter:

• Driver Created Threads
• Memory Management
• Calling Other Drivers
• Putting it All Together: The Melody Driver
• Invoking System Services

Driver Created Threads

We’ve seen how to create work items in chapter 6. Work items are useful when some code needs to execute
on a separate thread, and that code is “bound” in time - that is, it’s not too long, so that the driver doesn’t
“steal” a thread from the kernel worker threads. For long operations, however, it’s preferable that drivers
create their own seperate thread(s). Two functions are available for this purpose:

NTSTATUS PsCreateSystemThread(

Out PHANDLE ThreadHandle,

In ULONG DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ HANDLE ProcessHandle,

_Out_opt_ PCLIENT_ID ClientId,

In PKSTART_ROUTINE StartRoutine,

_In_opt_ PVOID StartContext);

NTSTATUS IoCreateSystemThread(// Win 8 and later

Inout PVOID IoObject,

Out PHANDLE ThreadHandle,

In ULONG DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 225

_In_opt_ HANDLE ProcessHandle,

_Out_opt_ PCLIENT_ID ClientId,

In PKSTART_ROUTINE StartRoutine,

_In_opt_ PVOID StartContext);

Both functions have the same set of parameters except the additional first parameter to
IoCreateSystemThread. The latter function takes an additional reference on the object passed in (which
must be a device object or a driver object), so the driver is not unloaded prematurely while the thread is
alive. IoCreateSystemThread is only available for Windows 8 and later systems. Here is a description of
the other parameters:

• ThreadHandle is the address of a handle to the created thread if successful. The driver must use
ZwClose to close the handle at some point.

• DesiredAccess is the access mask requested. Drivers should simply use THREAD_ALL_ACCESS to
get all possible access with the resulting handle.

• ObjectAttributes is the standard OBJECT_ATTRIBUTES structure. Most members have nomeaning
for a thread. The most common attributes to request of the returned handle is OBJ_KERNEL_HANDLE,
but it’s not needed if the thread is to be created in the System process - just pass NULL, which will
always return a kernel handle.

• ProcessHandle is a handle to the process where this thread should be created. Drivers should pass
NULL to indicate the thread should be part of the System process so it’s not tied to any specific
process’ lifetime.

• ClientId is an optional output structure, providing the process and thread ID of the newly created
thread. In most cases, this information is not needed, and NULL can be specified.

• StartRoutine is the function to execute in a separate thread of execution. This function must have
the following prototype:

VOID KSTART_ROUTINE (_In_ PVOID StartContext);

The StartContext value is provided by the last parameter to Ps/IoCreateSystemThread. This could be
anything (or NULL) that would give the new thread data to work with.

The function indicated by StartRoutine will start execution on a separate thread. It’s executed with the
IRQL being PASSIVE_LEVEL (0) in a critical region (where normal kernel APCs are disabled).

For PsCreateSystemThread, exiting the thread function is not enough to terminate the thread. An explicit
call to PsTerminateSystemThread is required to properly manage the thread’s lifetime:

NTSTATUS PsTerminateSystemThread(_In_ NTSTATUS ExitStatus);

The exit status is the exit code of the thread, which can be retrieved with PsGetThreadExitStatus if
desired.

For IoCreateSystemThread, exiting the thread function is sufficient, as PsTerminateSystemThread is
called on its behalf when the thread function returns. The exit code of the thread is always STATUS_-
SUCCESS.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 226

IoCreateSystemThread is a wrapper around PsCreateSystemThread that increments the ref
count of the passed in device/driver object, calls PsCreateSystemThread and then decrements
the ref count and calls PsTerminateSystemThread.

Memory Management

We have looked at the most common functions for dynamic memory allocation in chapter 3. The most
useful is ExAllocatePoolWithTag, which we have used multiple times in previous chapters. There are
other functions for dynamic memory allocation you might find useful. Then, we’ll examine lookaside lists,
that allow more efficient memory management if fixed-size chunks are needed.

Pool Allocations

In addition to ExAllocatePoolWithTag, the Executive provides an extended version that indicates the
importance of an allocation, taken into account in low memory conditions:

typedef enum _EX_POOL_PRIORITY {

LowPoolPriority,

LowPoolPrioritySpecialPoolOverrun = 8,

LowPoolPrioritySpecialPoolUnderrun = 9,

NormalPoolPriority = 16,

NormalPoolPrioritySpecialPoolOverrun = 24,

NormalPoolPrioritySpecialPoolUnderrun = 25,

HighPoolPriority = 32,

HighPoolPrioritySpecialPoolOverrun = 40,

HighPoolPrioritySpecialPoolUnderrun = 41

} EX_POOL_PRIORITY;

PVOID ExAllocatePoolWithTagPriority (

In POOL_TYPE PoolType,

In SIZE_T NumberOfBytes,

In ULONG Tag,

In EX_POOL_PRIORITY Priority);

The priority-related values indicate the importance of succeeding an allocation if system memory is low
(LowPoolPriority), very low (NormalPoolPriority), or completely out ofmemory (HighPoolPriority).
In any case, the driver should be prepared to handle a failure.

The “special pool” values tell the Executive to make the allocation at the end of a page (“Overrun” values)
or beginning of a page (“Underrun”) values, so it’s easier to catch buffer overflow or underflow. These
values should only be used while tracking memory corruptions, as each allocation costs at least one page.

StartingwithWindows 10 version 1909 (andWindows 11), two new pool allocation functions are supported.
The first is ExAllocatePool2 declared like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 227

PVOID ExAllocatePool2 (

In POOL_FLAGS Flags,

In SIZE_T NumberOfBytes,

In ULONG Tag);

Where the POOL_FLAGS enumeration consists of a combination of values shown in table 8-1:

Table 8-1: Flags for ExAllocatePool2

Flag (POOL_FLAG_) Must recognize? Description

USE_QUOTA Yes Charge allocation to calling process

UNINITIALIZED Yes Contents of allocated memory is not touched. Without this flag,
the memory is zeroed out

CACHE_ALIGNED Yes Address should be CPU-cache aligned. This is “best effort”

RAISE_ON_FAILURE Yes Raises an exception (STATUS_INSUFFICIENT_RESOURCES)
instead of returning NULL if allocation fails

NON_PAGED Yes Allocate from non-paged pool. The memory is executable on
x86, and non-executable on all other platforms

PAGED Yes Allocate from paged pool. The memory is executable on x86,
and non-executable on all other platforms

NON_PAGED_EXECUTABLE Yes Non paged pool with execute permissions

SPECIAL_POOL No Allocates from “special” pool (separate from the normal pool so
it’s easier to find memory corruptions)

TheMust recognize? column indicates whether failure to recognize or satisfy the flag causes the function
to fail.

The second allocation function, ExAllocatePool3, is extensible, so new functions of this sort are unlikely
to pop up in the future:

PVOID ExAllocatePool3 (

In POOL_FLAGS Flags,

In SIZE_T NumberOfBytes,

In ULONG Tag,

_In_reads_opt_(ExtendedParametersCount)

PCPOOL_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtendedParametersCount);

This function allows customization with an array of “parameters”, where the supported parameter types
may be extended in future kernel versions. The currently available parameters are defined with the POOL_-
EXTENDED_PARAMETER_TYPE enumeration:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 228

typedef enum POOL_EXTENDED_PARAMETER_TYPE {

PoolExtendedParameterInvalidType = 0,

PoolExtendedParameterPriority,

PoolExtendedParameterSecurePool,

PoolExtendedParameterNumaNode,

PoolExtendedParameterMax

} POOL_EXTENDED_PARAMETER_TYPE, *PPOOL_EXTENDED_PARAMETER_TYPE;

The array provided to ExAllocatePool3 consists of structures of type POOL_EXTENDED_PARAMETER, each
one specifying one parameter:

typedef struct _POOL_EXTENDED_PARAMETER {

struct {

ULONG64 Type : 8;

ULONG64 Optional : 1;

ULONG64 Reserved : 64 - 9;

};

union {

ULONG64 Reserved2;

PVOID Reserved3;

EX_POOL_PRIORITY Priority;

POOL_EXTENDED_PARAMS_SECURE_POOL* SecurePoolParams;

POOL_NODE_REQUIREMENT PreferredNode; // ULONG

};

} POOL_EXTENDED_PARAMETER, *PPOOL_EXTENDED_PARAMETER;

The Type member indicates which of the union members is valid for this parameter (POOL_EXTENDED_-
PARAMETER_TYPE). Optional indicates if the parameter set is optional or required. An optional parameter
that fails to be satisfied does not cause the ExAllocatePool3 to fail. Based on Type, the correct member
in the union must be set. Currently, these parameters are available:

• Priority of the allocation (Priority member)
• Preferred NUMA node (PreferredNode member)
• Use secure pool (discussed later, SecurePoolParams member)

The following example shows using ExAllocatePool3 to achieve the same effect as
ExAllocatePoolWithTagPriority for non-paged memory:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 229

PVOID AllocNonPagedPriority(ULONG size, ULONG tag, EX_POOL_PRIORITY priority) {

POOL_EXTENDED_PARAMETER param;

param.Optional = FALSE;

param.Type = PoolExtendedParameterPriority;

param.Priority = priority;

return ExAllocatePool3(POOL_FLAG_NON_PAGED, size, tag, ¶m, 1);

}

Secure Pools

Secure pools introduced in Windows 10 version 1909 allow kernel callers to have a memory pool that
cannot be accessed by other kernel components. This kind of protection is internally achieved by the
Hyper-V hypervisor, leveraging its power to protect memory access even from the kernel, as the memory
is part of Virtual Trust Level (VTL) 1 (the secure world). Currently, secure pools are not fully documented,
but here are the basic steps to use a secure pool.

Secure pools are only available if Virtualization Based Security (VBS) is active (meaning Hyper-
V exists and creates the two worlds - normal and secure). Discussion of VBS is beyond the scope
of this book. Consult information online (or the Windows Internals books) for more on VBS.

A secure pool can be created with ExCreatePool, returning a handle to the pool:

#define POOL_CREATE_FLG_SECURE_POOL 0x1

#define POOL_CREATE_FLG_USE_GLOBAL_POOL 0x2

#define POOL_CREATE_FLG_VALID_FLAGS (POOL_CREATE_FLG_SECURE_POOL | \

POOL_CREATE_FLG_USE_GLOBAL_POOL)

NTSTATUS ExCreatePool (

In ULONG Flags,

In ULONG_PTR Tag,

_In_opt_ POOL_CREATE_EXTENDED_PARAMS* Params,

Out HANDLE* PoolHandle);

Currently, flags should be POOL_CREATE_FLG_VALID_FLAGS (both supported flags), and Params should be
NULL. PoolHandle contains the pool handle if the call succeeds.

Allocating from a secure pool must be done with ExAllocatePool3, described in the previous section
with a POOL_EXTENDED_PARAMS_SECURE_POOL structure as a parameter:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 230

#define SECURE_POOL_FLAGS_NONE 0x0

#define SECURE_POOL_FLAGS_FREEABLE 0x1

#define SECURE_POOL_FLAGS_MODIFIABLE 0x2

typedef struct _POOL_EXTENDED_PARAMS_SECURE_POOL {

HANDLE SecurePoolHandle; // pool handle

PVOID Buffer; // initial data

ULONG_PTR Cookie; // for validation

ULONG SecurePoolFlags; // flags above

} POOL_EXTENDED_PARAMS_SECURE_POOL;

Buffer points to existing data to be initially stored in the new allocation. Cookie is used for validation, by
calling ExSecurePoolValidate. Freeing memory from a secure pool must be done with a new function,
ExFreePool2:

VOID ExFreePool2 (

_Pre_notnull_ PVOID P,

In ULONG Tag,

_In_reads_opt_(ExtendedParametersCount)

PCPOOL_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtendedParametersCount);

If ExtendedParameters is NULL (and ExtendedParametersCount is zero), the call is diverted to the nor-
mal ExFreePool, which will fail for a secure pool. For a secure pool, a single POOL_EXTENDED_PARAMETER
is required that has the pool parameters with the pool handle only. Buffer should be NULL.

Updating the memory in the pool requires its own call:

NTSTATUS ExSecurePoolUpdate (

In HANDLE SecurePoolHandle,

In ULONG Tag,

In PVOID Allocation,

In ULONG_PTR Cookie,

In SIZE_T Offset,

In SIZE_T Size,

In PVOID Buffer);

Finally, a secure pool must be destroyed with ExDestroyPool:

VOID ExDestroyPool (_In_ HANDLE PoolHandle);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 231

Overloading the new and delete Operators

We know there is no C++ runtime in the kernel, which means some C++ features that work as expected
in user mode don’t work in kernel mode. One of these features are the new and delete C++ operators. Al-
though we can use the dynamic memory allocation functions, new and delete have a couple of advantages
over calling the raw functions:

• new causes a constructor to be invoked, and delete causes the destructor to be invoked.
• new accepts a type for which memory must be allocated, rather than specifying a number of bytes.

Fortunately, C++ allows overloading the new and delete operators, either globally or for secific types.
new can be overloaded with extra parameters that are needed for kernel allocations - at least the pool type
must be specified. The first argument to any overloaded new is the number of bytes to allocate, and any
extra parameters can be added after that. These are specified with paranthesis when actually used. The
compiler inserts a call to the appropriate constructor, if exists.

Here is a basic implementation of an overloaded new operator that calls ExAllocatePoolWithTag:

void* __cdecl operator new(size_t size, POOL_TYPE pool, ULONG tag) {

return ExAllocatePoolWithTag(pool, size, tag);

}

The __cdeclmodifier indicates this should be using the C calling convention (rather than the __stdcall
convention). It only matters in x86 builds, but still should be specified as shown.

Here is an example usage, assuming an object of type MyData needs to be allocated from paged pool:

MyData* data = new (PagedPool, DRIVER_TAG) MyData;

if(data == nullptr)

return STATUS_INSUFFICIENT_RESOURCES;

// do work with data

The size parameter is never specified explicitly as the compiler inserts the correct size (which is essentially
sizeof(MyData) in the above example). All other parameters must be specified.We canmake the overload
simpler to use if we default the tag to a macro such as DRIVER_TAG, expected to exist:

void* __cdecl operator new(size_t size, POOL_TYPE pool,

ULONG tag = DRIVER_TAG) {

return ExAllocatePoolWithTag(pool, size, tag);

}

And the corresponding usage is simpler:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 232

MyData* data = new (PagedPool) MyData;

In the above examples, the default constructor is invoked, but it’s perfectly valid to invoke any other
constructor that exists for the type. For example:

struct MyData {

MyData(ULONG someValue);

// details not shown

};

auto data = new (PagedPool) MyData(200);

We can easily extend the overloading idea to other overloads, such as one that wraps
ExAllocatePoolWithTagPriority:

void* __cdecl operator new(size_t size, POOL_TYPE pool,

EX_POOL_PRIORITY priority, ULONG tag = DRIVER_TAG) {

return ExAllocatePoolWithTagPriority(pool, size, tag, priority);

}

Using the above operator is just a matter of adding a priority in parenthesis:

auto data = new (PagedPool, LowPoolPriority) MyData(200);

Another common case is where you already have an allocated block of memory to store some object
(perhaps allocated by a function out of your control), but you still want to initialize the object by invoking
a constructor. Another new overload can be used for this purpose, known as placement new, since it does
not allocate anything, but the compiler still adds a call to a constructor. Here is how to define a placement
new operator overload:

void* __cdecl operator new(size_t size, void* p) {

return p;

}

And an example usage:

void* SomeFunctionAllocatingObject();

MyData* data = (MyData*)SomeFunctionAllocatingObject();

new (data) MyData;

Finally, an overload for delete is required so the memory can be freed at some point, calling the destructor
if it exists. Here is how to overload the delete operator:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 233

void __cdecl operator delete(void* p, size_t) {

ExFreePool(p);

}

The extra size parameter is not used in practice (zero is always the value provided), but the compiler
requires it.

Remember that you cannot have global objects that have default constructors that do some-
thing, since there is no runtime to invoke them. The compiler will report a warning if you try. A
way around it (of sorts) is to declare the global variable as a pointer, and then use an overloaded
new to allocate and invoke a constructor in DriverEntry. of course, you must remember to call
delete in the driver’s unload routine.

Another variant of the delete operator the compiler might insist on if you set the compiler
conformance to C++17 or newer is the following:

void __cdecl operator delete(void* p, size_t, std::align_val_t) {

ExFreePool(p);

}

You can look up the meaning of std::align_val_t in a C++ reference, but it does not matter
for our purposes.

Lookaside Lists

The dynamic memory allocation functions discussed so far (the ExAllocatePool* family of APIs) are
generic in nature, and can accommodate allocations of any size. Internally, managing the pool is non-
trivial: various lists are needed tomanage allocations and deallocations of different sizes. This management
aspect of the pools is not free.

One fairly common case that leaves room for optimizations is when fixed-sized allocations are needed.
When such allocation is freed, it’s possible to not really free it, but just mark it as available. The next
allocation request can be satisfied by the existing block, which is much faster to do than allocating a fresh
block. This is exactly the purpose of lookaside lists.

There are two APIs to use for working with lookaside lists. The original one, available fromWindows 2000,
and a newer available from Vista. I’ll describe both, as they are quite similar.

The “Classic” Lookaside API

The first thing to do is to initialize the data structure managing a lookaside list. Two functions are available,
which are essentially the same, selecting the paged pool or non-paged pool where the allocations should
be coming from. Here is the paged pool version:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 234

VOID ExInitializePagedLookasideList (

Out PPAGED_LOOKASIDE_LIST Lookaside,

_In_opt_ PALLOCATE_FUNCTION Allocate,

_In_opt_ PFREE_FUNCTION Free,

In ULONG Flags,

In SIZE_T Size,

In ULONG Tag,

In USHORT Depth);

The non-paged variant is practically the same, with the function name being ExInitializeNPagedLookasideList.

The first parameter is the resulting initialized structure. Although, the structure layout is described in
wdm.h (with a macro named GENERAL_LOOKASIDE_LAYOUT to accommodate multiple uses that can’t be
shared in other ways using the C language), you should treat this structure as opaque.

The Allocate parameter is an optional allocation function that is called by the lookaside implementation
when a new allocation is required. If specified, the allocation function must have the following prototype:

PVOID AllocationFunction (

In POOL_TYPE PoolType,

In SIZE_T NumberOfBytes,

In ULONG Tag);

The allocation function receives the same parameters as ExAllocatePoolWithTag. In fact, if the allocation
function is not specified, this is the call made by the lookaside list manager. If you don’t require any other
code, just specify NULL. A custom allocation function could be useful for debugging purposes, for example.
Another possibility is to call ExAllocatePoolWithTagPriority instead of ExAllocatePoolWithTag, if
that makes sense for your driver.

If you do provide an allocation function, you might need to provide a de-allocation function in the Free
parameter. If not specified, the lookaside list manager calls ExFreePool. Here is the expected prototype
for this function:

VOID FreeFunction (

In __drv_freesMem(Mem) PVOID Buffer);

The next parameter, Flags can be zero or POOL_RAISE_IF_ALLOCATION_FAILURE (Windows 8 and later)
that indicates an exception should be raised (STATUS_INSUFFICIENT_RESOURCE) if an allocation fails,
instead of returning NULL to the caller.

The Size parameter is the size of chunks managed by the lookaside list. Usually, you would specify it as
sizeof some structure you want to manage. Tag is the tag to use for allocations. Finally, the last parameter,
Depth, indicates the number of allocations to keep in a cache. The documentation indicates this parameter
is “reserved” and should be zero, which makes the lookaside list manager to choose something appropriate.
Regardless of the number, the “depth” is adjusted based on the allocation patterns used with the lookaside
list.

Once a lookaside list is initialized, you can request a memory block (of the size specified in the initialization
function, of course) by calling ExAllocateFromPagedLookasideList:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 235

PVOID ExAllocateFromPagedLookasideList (

Inout PPAGED_LOOKASIDE_LIST Lookaside)

Nothing could be simpler - no special parameters are required, since everything else is already known. The
corresponding function for a non-paged pool lookaside list is ExAllocateFromNPagedLookasideList.

The opposite function used to free an allocation (or return it to the cache) is ExFreeToPagedLookasideList:

VOID ExFreeToPagedLookasideList (

Inout PPAGED_LOOKASIDE_LIST Lookaside,

In __drv_freesMem(Mem) PVOID Entry)

The only value required is the pointer to free (or return to the cache). As you probably guess, the non-paged
pool variant is ExFreeToNPagedLookasideList.

Finally, when the lookaside list is no longer needed, it must be freed by calling ExDeletePagedLookasideList:

VOID ExDeletePagedLookasideList (

Inout PPAGED_LOOKASIDE_LIST Lookaside);

One nice benefit of lookaside lists is that you don’t have to return all allocations to the list by repeatedly call-
ing ExFreeToPagedLookasideList before calling ExDeletePagedLookasideList; the latter is enough,
and will free all allocated blocks automatically. ExDeleteNPagedLookasideList is the corresponding
non-paged variant.

Write a C++ class wrapper for lookaside lists using the above APIs.

The Newer Lookaside API

The newer API provides two main benefits over the classic API:

• Uniform API for paged and non-paged blocks.
• The lookaside list structure itself is passed to the custom allocate and free functions (if provided),
that allows accessing driver data (example shown later).

Initializing a lookaside list is accomplished with ExInitializeLookasideListEx:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 236

NTSTATUS ExInitializeLookasideListEx (

Out PLOOKASIDE_LIST_EX Lookaside,

_In_opt_ PALLOCATE_FUNCTION_EX Allocate,

_In_opt_ PFREE_FUNCTION_EX Free,

In POOL_TYPE PoolType,

In ULONG Flags,

In SIZE_T Size,

In ULONG Tag,

In USHORT Depth);

PLOOKASIDE_LIST_EX is the opaque data structure to initialize, which must be allocated from non-paged
memory, regardless of whether the lookaside list is to manage paged or non-paged memory.

The allocation and free functions are optional, just as they are with the classic API. These are their
prototypes:

PVOID AllocationFunction (

In POOL_TYPE PoolType,

In SIZE_T NumberOfBytes,

In ULONG Tag,

Inout PLOOKASIDE_LIST_EX Lookaside);

VOID FreeFunction (

In __drv_freesMem(Mem) PVOID Buffer,

Inout PLOOKASIDE_LIST_EX Lookaside);

Notice the lookaside list itself is a parameter. This could be used to access driver data that is part of a larger
structure containing the lookaside list. For example, suppose the driver has the following structure:

struct MyData {

ULONG SomeData;

LIST_ENTRY SomeHead;

LOOKASIDELIST_EX Lookaside;

};

The driver creates an instance of that structure (maybe globally, or on a per-client basis). Let’s assume it’s
created dynamically for every client creating a file object to talk to a device the driver manages:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 237

// if new is overridden as described earlier in this chapter

MyData* pData = new (NonPagedPool) MyData;

// or with a standard allocation call

MyData* pData = (MyData*)ExAllocatePoolWithTag(NonPagedPool,

sizeof(MyData), DRIVER_TAG);

// initilaize the lookaside list

ExInitializeLookasideListEx(&pData->Lookaside, MyAlloc, MyFree, ...);

In the allocation and free functions, we can get a pointer to our MyData object that contains whatever
lookaside list is being used at the time:

PVOID MyAlloc(POOL_TYPE type, SIZE_T size, ULONG tag,

PLOOKASIDE_LIST_EX lookaside) {

MyData* data = CONTAINING_RECORD(lookaside, MyData, Lookaside);

// access members

//...

}

The usefulness of this technique is if you have multiple lookaside lists, each one could have their own
“context” data. Obviously, if you just have one such list stored globally, you can just access whatever
global variables you need.

Continuing with ExInitializeLookasideListEx - PoolType is the pool type to use; this is where the
driver selects where allocations should be made from. Size, Tag and Depth have the same meaning as they
do in the classic API.

The Flags parameter can be zero, or one of the following:

• EX_LOOKASIDE_LIST_EX_FLAGS_RAISE_ON_FAIL - raise an exception instead of returning NULL to
the caller in case of an allocation failure.

• EX_LOOKASIDE_LIST_EX_FLAGS_FAIL_NO_RAISE - this flag can only be specified if a custom alloca-
tion routine is specified, which causes the pool type provided to the allocation function to be ORed
with the POOL_QUOTA_FAIL_INSTEAD_OF_RAISE flag that causes a call to

ExAllocatePoolWithQuotaTag to return NULL on quota limit violation instead of raising the POOL_-
QUOTA_FAIL_INSTEAD_OF_RAISE exception. See the docs for more details.

The above flags are mutually exclusive.

Once the lookaside list is initialized, allocation and deallocation are done with the following APIs:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 238

PVOID ExAllocateFromLookasideListEx (_Inout_ PLOOKASIDE_LIST_EX Lookaside);

VOID ExFreeToLookasideListEx (

Inout PLOOKASIDE_LIST_EX Lookaside,

In __drv_freesMem(Entry) PVOID Entry);

Of course, the terms “allocation” and “deallocation” are in the context of a lookaside list, meaning alloca-
tions could be reused, and deallocations might return the block to the cache.

Finally, a lookaside list must be deleted with ExDeleteLookasideListEx:

VOID ExDeleteLookasideListEx (_Inout_ PLOOKASIDE_LIST_EX Lookaside);

Calling Other Drivers

One way to talk to other drivers is to be a “proper” client by calling ZwOpenFile or ZwCreateFile in
a similar manner to what a user-mode client does. Kernel callers have other options not available for
user-mode callers. One of the options is creating IRPs and sending them to a device object directly for
processing.

IRPs are typically created by one of the three managers, part of the Executive: I/O manager, Plug & Play
manager, and Power manager. In the cases we’ve seen so far, the I/O manager is the one creating IRPs for
create, close, read, write, and device I/O control request types. Drivers can create IRPs as well, initialize
them and then send them directly to another driver for processing. This could be more efficient than
opening a handle to the desired device, and thenmaking calls using ZwReadFile, ZwWriteFile and similar
APIs we’ll look at in more detail in a later chapter. In some cases, opening a handle to a device might not
even be an option, but obtaining a device object pointer might still be possible.

The kernel provides a generic API for building IRPs, starting with IoAllocateIrp. Using this API requires
the driver to register a completion routine so the IRP can be properly freed. We’ll examine these techniques
in a later chapter (“Advanced Programming Techniques (Part 2)”). In this section, I’ll introduce a simpler
function to build a device I/O control IRP using IoBuildDeviceIoControlRequest:

PIRP IoBuildDeviceIoControlRequest(

In ULONG IoControlCode,

In PDEVICE_OBJECT DeviceObject,

_In_opt_ PVOID InputBuffer,

In ULONG InputBufferLength,

_Out_opt_ PVOID OutputBuffer,

In ULONG OutputBufferLength,

In BOOLEAN InternalDeviceIoControl,

_In_opt_ PKEVENT Event,

Out PIO_STATUS_BLOCK IoStatusBlock);

The API returns a proper IRP pointer on success, including filling in the first IO_STACK_LOCATION, or NULL
on failure. Some of the parameters to IoBuildDeviceIoControlRequest are the same provided to the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 239

DeviceIoControl user-mode API (or to its kernel equivalent, ZwDeviceIoControlFile) - IoControlCode,
InputBuffer, InputBufferLength, OutputBuffer and OutputBufferLength.

The other parameters are the following:

• DeviceObject is the target device of this request. It’s needed so the API can allocate the correct
number of IO_STACK_LOCATION structures that accompany any IRP.

• InternalDeviceControl indicateswhether the IRP should set itsmajor function to IRP_MJ_INTERNAL_-
DEVICE_CONTROL (TRUE) or IRP_MJ_DEVICE_CONTROL (FALSE). This obviously depends on the target
device’s expectations.

• Event is an optional pointer to an event object that gets signaled when the IRP is completed by the
target device (or some other device the target may send the IRP to). An event is needed if the IRP
is sent for synchronous processing, so that the caller can wait on the event if the operation has not
yet completed. We’ll see a complete example in the next section.

• IoStatusBlock returns the final status of the IRP (status and information), so the caller can examine
it if it so wishes.

The call to IoBuildDeviceIoControlRequest just builds the IRP - it is not sent anywhere at this point.
To actually send the IRP to a device, call the generic IoCallDriver API:

NTSTATUS IoCallDriver(

In PDEVICE_OBJECT DeviceObject,

Inout PIRP Irp);

IoCallDriver advances the current I/O stack location to the next, and then invokes the target driver’s
major function dispatch routine. It returns whatever is returned from that dispatch routine. Here is a very
simplified implementation:

NTSTATUS IoCallDriver(PDEVICE_OBJECT DeviceObject, PIRP Irp {

// update the current layer index

DeviceObject->CurrentLocation--;

auto irpSp = IoGetNextIrpStackLocation(Irp);

// make the next stack location the current one

Irp->Tail.Overlay.CurrentStackLocation = irpSp;

// update device object

irpSp->DeviceObject = DeviceObject;

return (DeviceObject->DriverObject->MajorFunction[irpSp->MajorFunction])

(DeviceObject, Irp);

}

The main question remaining is how to we get a pointer to a device object in the first place? One way is
by calling IoGetDeviceObjectPointer:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 240

NTSTATUS IoGetDeviceObjectPointer(

In PUNICODE_STRING ObjectName,

In ACCESS_MASK DesiredAccess,

Out PFILE_OBJECT *FileObject,

Out PDEVICE_OBJECT *DeviceObject);

TheObjectName parameter is the fully-qualified name of the device object in the Object Manager’s names-
pace (as can be viewedwith theWinObj tool from Sysinternals). Desired access is usually FILE_READ_DATA,
FILE_WRITE_DATA or FILE_ALL_ACCESS. Two values are returned on success: the device object pointer (in
DeviceObject) and an open file object pointing to the device object (in FileObject).

The file object is not usually needed, but it should be kept around as a means of keeping the device object
referenced.When you’re done with the device object, call ObDereferenceObject on the file object pointer
to decrement the device object’s reference count indirectly. Alternatively, you can increment the device
object’s reference count (ObReferenceObject) and then decrement the file object’s reference count so you
don’t have to keep it around.

The next section demostrates usage of these APIs.

Putting it All Together: The Melody Driver

The Melody driver we’ll build in this section demonstrates many of the techniques shown in this chapter.
The melody driver allows playing sounds asynchronously (contrary to the Beep user-mode API that plays
sounds synchronously). A client application calls DeviceIoControl with a bunch of notes to play, and
the driver will play them as requested without blocking. Another sequence of notes can then be sent to
the driver, those notes queued to be played after the first sequence is finished.

It’s possible to come up with a user-mode solution that would do essentially the same thing, but this can
only be easily done in the context of a single process. A driver, on the other hand, can accept calls from
multiple processes, having a “global” ordering of playback. In any case, the point is to demonstrate driver
programming techniques, rather than managing a sound playing scenario.

We’ll start by creating an empty WDM driver, as we’ve done in previous chapters, named KMelody. Then
we’ll add a file named MelodyPublic.h to serve as the common data to the driver and a user-mode client.
This is where we define what a note looks like and an I/O control code for communication:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 241

// MelodyPublic.h

#pragma once

#define MELODY_SYMLINK L"\\??\\KMelody"

struct Note {

ULONG Frequency;

ULONG Duration;

ULONG Delay{ 0 };

ULONG Repeat{ 1 };

};

#define MELODY_DEVICE 0x8003

#define IOCTL_MELODY_PLAY \

CTL_CODE(MELODY_DEVICE, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

A note consists of a frequency (in Hertz) and duration to play. To make it a bit more interesting, a delay
and repeat count are added. If Repeat is greater than one, the sound is played Repeat times, with a delay
of Delay between repeats. Duration and Delay are provided in milliseconds.

The architecture we’ll go for in the driver is to have a thread created when the first client opens a handle
to our device, and that thread will perform the playback based on a queue of notes the driver manages.
The thread will be shut down when the driver unloads.

It may seem asymmetric at this point - why not create the thread when the driver loads? As we shall
see shortly, there is a little “snag” that we have to deal with that prevents creating the thread when the
driver loads.

Let’s start with DriverEntry. It needs to create a device object and a symbolic link. Here is the full
function:

PlaybackState* g_State;

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(RegistryPath);

g_State = new (PagedPool) PlaybackState;

if (g_State == nullptr)

return STATUS_INSUFFICIENT_RESOURCES;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 242

auto status = STATUS_SUCCESS;

PDEVICE_OBJECT DeviceObject = nullptr;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\KMelody");

do {

UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Device\\KMelody");

status = IoCreateDevice(DriverObject, 0, &name, FILE_DEVICE_UNKNOWN,

0, FALSE, &DeviceObject);

if (!NT_SUCCESS(status))

break;

status = IoCreateSymbolicLink(&symLink, &name);

if (!NT_SUCCESS(status))

break;

} while (false);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Error (0x%08X)\n", status));

delete g_State;

if (DeviceObject)

IoDeleteDevice(DeviceObject);

return status;

}

DriverObject->DriverUnload = MelodyUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = MelodyCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = MelodyDeviceControl;

return status;

}

Most of the code should be familiar by now. The only new code is the creation of an object of type
PlaybackState. The new C++ operator is overloaded as described earlier in this chapter. If allocating
a PlaybackState instance fails, DriverEntry returns STATUS_INSUFFICIENT_RESOURCES, reporting a
failure to the kernel.

The PlaybackState class is going to manage the list of notes to play and most other functionality specific
to the driver. Here is its declaration (in PlaybackState.h):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 243

struct PlaybackState {

PlaybackState();

~PlaybackState();

NTSTATUS AddNotes(const Note* notes, ULONG count);

NTSTATUS Start(PVOID IoObject);

void Stop();

private:

static void PlayMelody(PVOID context);

void PlayMelody();

LIST_ENTRY m_head;

FastMutex m_lock;

PAGED_LOOKASIDE_LIST m_lookaside;

KSEMAPHORE m_counter;

KEVENT m_stopEvent;

HANDLE m_hThread{ nullptr };

};

m_head is the head of the linked list holding the notes to play. Since multiple threads can access this list,
it must be protected with a synchronization object. In this case, we’ll go with a fast mutex. FastMutex
is a wrapper class similar to the one we saw in chapter 6, with the added twist that it’s initialized in its
constructor rather than a separate Initmethod. This is convenient, and possible, because PlaybackState
is allocated dynamically, causing its constructor to be invoked, along with constructors for data members
(if any).

The note objects will be allocated from a lookaside list (m_lookaside), as each note has a fixed size, and
there is a strong likelihood of many notes coming and going. m_stopEvent is an event object that will be
used as a way to signal our playback thread to terminate. m_hThread is the playback thread handle. Finally,
m_counter is a semaphore that is going to be used in a somewhat counter-intuitive way, its internal count
indicating the number of notes in the queue.

As you can see, the event and semaphore don’t have wrapper classes, so we need to initialize them in the
PlaybackState constructor. Here is the constructor in full (in PlaybackState.cpp) with an addition of a
type that is going to hold a single node:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 244

struct FullNote : Note {

LIST_ENTRY Link;

};

PlaybackState::PlaybackState() {

InitializeListHead(&m_head);

KeInitializeSemaphore(&m_counter, 0, 1000);

KeInitializeEvent(&m_stopEvent, SynchronizationEvent, FALSE);

ExInitializePagedLookasideList(&m_lookaside, nullptr, nullptr, 0,

sizeof(FullNote), DRIVER_TAG, 0);

}

Here are the initialization steps taken by the constructor:

• Initialize the linked list to an empty list (InitializeListHead).
• Initialize the semaphore to a value of zero, meaning no notes are queued up at this point, with a
maximum of 1000 queued notes. Of course, this number is arbitrary.

• Initialize the stop event as a SynchronizationEvent type in the non-signaled state (KeInitializeEvent).
Technically, a NotificationEvent would have worked just as well, as just one thread will be
waiting on this event as we’ll see later.

• Initialize the lookaside list to managed paged pool allocations with size of sizeof(FullNote).
FullNote extends Note to include a LIST_ENTRY member, otherwise we can’t store such objects
in a linked list. The FullNote type should not be visible to user-mode, which is why it’s defined
privately in the driver’s source files only.

DRIVER_TAG and DRIVER_PREFIX are defined in the file KMelody.h.

Before the driver finally unloads, the PlaybackState object is going to be destroyed, invoking its destruc-
tor:

PlaybackState::~PlaybackState() {

Stop();

ExDeletePagedLookasideList(&m_lookaside);

}

The call to Stop signals the playback thread to terminate as we’ll see shortly. The only other thing left to
do in terms of cleanup is to free the lookaside list.

The unload routine for the driver is similar to ones we’ve seen before with the addition of freeing the
PlaybackState object:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 245

void MelodyUnload(PDRIVER_OBJECT DriverObject) {

delete g_State;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\KMelody");

IoDeleteSymbolicLink(&symLink);

IoDeleteDevice(DriverObject->DeviceObject);

}

The IRP_MJ_DEVICE_CONTROL handler is where notes provided by a client need to be added to the queue
of notes to play. The implementation is pretty straightforward because the heavy lifting is performed by
the PlaybackState::AddNotes method. Here is MelodyDeviceControl that validates the client’s data
and then invokes AddNotes:

NTSTATUS MelodyDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = 0;

switch (dic.IoControlCode) {

case IOCTL_MELODY_PLAY:

if (dic.InputBufferLength == 0 ||

dic.InputBufferLength % sizeof(Note) != 0) {

status = STATUS_INVALID_BUFFER_SIZE;

break;

}

auto data = (Note*)Irp->AssociatedIrp.SystemBuffer;

if (data == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;

}

status = g_State->AddNotes(data,

dic.InputBufferLength / sizeof(Note));

if (!NT_SUCCESS(status))

break;

info = dic.InputBufferLength;

break;

}

return CompleteRequest(Irp, status, info);

}

CompleteRequest is a helper that we’ve seen before that completes the IRP with the given status and
information:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 246

NTSTATUS CompleteRequest(PIRP Irp,

NTSTATUS status = STATUS_SUCCESS, ULONG_PTR info = 0);

//...

NTSTATUS CompleteRequest(PIRP Irp, NTSTATUS status, ULONG_PTR info) {

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = info;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

PlaybackState::AddNotes needs to iterate over the provided notes. Here is the beginning of the function:

NTSTATUS PlaybackState::AddNotes(const Note* notes, ULONG count) {

KdPrint((DRIVER_PREFIX "State::AddNotes %u\n", count));

for (ULONG i = 0; i < count; i++) {

For each note, it needs to allocate a FullNote structure from the lookaside list:

auto fullNote = (FullNote*)ExAllocateFromPagedLookasideList(&m_lookaside);

if (fullNote == nullptr)

return STATUS_INSUFFICIENT_RESOURCES;

If succesful, the note data is copied to the FullNote and is added to the linked list under the protection of
the fast mutex:

//

// copy the data from the Note structure

//

memcpy(fullNote, ¬es[i], sizeof(Note));

//

// insert into the linked list

//

Locker locker(m_lock);

InsertTailList(&m_head, &fullNote->Link);

}

Locker<T> is the same type we looked at in chapter 6. The notes are inserted at the back of the list
with InsertTailList. This is where we must provide a pointer to a LIST_ENTRY object, which is why
FullNote objects are used instead of just Note. Finally, when the loop is completed, the semaphore must
be incremented by the number of notes to indicate there are count more notes to play:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 247

//

// make the semaphore signaled (if it wasn't already) to

// indicate there are new note(s) to play

//

KeReleaseSemaphore(&m_counter, 2, count, FALSE);

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",

KeReadStateSemaphore(&m_counter)));

The value 2 used in KeReleaseSemaphore is the temporary priority boost a driver can provide to a thread
that is released because of the semaphore becoming signaled (the same thing happens with the second
parameter to IoCompleteRequest). I’ve chosen the value 2 arbitrarily. The value 0 (IO_NO_INCREMENT) is
fine as well.

For debugging purposes, it may be useful to read the semaphore’s count with KeReadStateSemaphore as
was done in the above code. Here is the full function (without the comments):

NTSTATUS PlaybackState::AddNotes(const Note* notes, ULONG count) {

KdPrint((DRIVER_PREFIX "State::AddNotes %u\n", count));

for (ULONG i = 0; i < count; i++) {

auto fullNote =

(FullNote*)ExAllocateFromPagedLookasideList(&m_lookaside);

if (fullNote == nullptr)

return STATUS_INSUFFICIENT_RESOURCES;

memcpy(fullNote, ¬es[i], sizeof(Note));

Locker locker(m_lock);

InsertTailList(&m_head, &fullNote->Link);

}

KeReleaseSemaphore(&m_counter, 2, count, FALSE);

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",

KeReadStateSemaphore(&m_counter)));

return STATUS_SUCCESS;

}

The next part to look at is handling IRP_MJ_CREATE and IRP_MJ_CLOSE. In earlier chapters, we just
completed these IRPs successfully and that was it. This time, we need to create the playback thread when
the first client opens a handle to our device. The initialization in DriverEntry points both indices to the
same function, but the code is slightly different between the two. We could separate them to different
functions, but if the difference is not great we might decide to handle both within the same function.

For IRP_MJ_CLOSE, there is nothing to do but complete the IRP successfuly. For IRP_MJ_CREATE, we want
to start the playback thread the first time the dispatch routine is invoked. Here is the code:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 248

NTSTATUS MelodyCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

auto status = STATUS_SUCCESS;

if (IoGetCurrentIrpStackLocation(Irp)->MajorFunction == IRP_MJ_CREATE) {

//

// create the "playback" thread (if needed)

//

status = g_State->Start(DeviceObject);

}

return CompleteRequest(Irp, status);

}

The I/O stack location contains the IRP major function code we can use to make the distinction as required
here. In the Create case, we call PlaybackState::Startwith the device object pointer that would be used
to keep the driver object alive as long as the thread is running. Let’s see what that method looks like.

NTSTATUS PlaybackState::Start(PVOID IoObject) {

Locker locker(m_lock);

if (m_hThread)

return STATUS_SUCCESS;

return IoCreateSystemThread(

IoObject, // Driver or device object

&m_hThread, // resulting handle

THREAD_ALL_ACCESS, // access mask

nullptr, // no object attributes required

NtCurrentProcess(), // create in the current process

nullptr, // returned client ID

PlayMelody, // thread function

this); // passed to thread function

}

Acquiring the fast mutex ensures that a second thread is not created (as m_hThreadwould already be non-
NULL). The thread is createdwith IoCreateSystemThread, which is preferred over PsCreateSystemThread
because it ensures that the driver is not unloaded while the thread is executing (this does require Windows
8 or later).

The passed-in I/O object is the device object provided by the IRP_MJ_CREATE handler. The most common
way of creating a thread by a driver is to run it in the context of the System process, as it normally should
not be tied to a user-mode process. Our case, however, is more complicated because we intend to use the
Beep driver to play the notes. The Beep driver needs to be able to handle multiple users (that might be
connected to the same system), each one playing their own sounds. This is why when asked to play a note,
the Beep driver plays in the context of the caller’s session. If we create the thread in the System process,
which is always part of session zero, we will not hear any sound, because session 0 is not an interactive
user session.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 249

This means we need to create our thread in the context of some process running under the caller’s session
- Using the caller’s process directly (NtCurrentProcess) is the simplest way to get it working. You may
frown at this, and rightly so, because the first process calling the driver to play something is going to have
to host that thread for the lifetime of the driver. This has an unintended side effect: the process will not die.
Even if it may seem to terminate, it will still show up in Task Manager with our thread being the single
thread still keeping the process alive. We’ll find a more elegant solution later in this chapter.

Yet another consequence of this arrangement is that we only handle one session - the first one where one
of its processes happens to call the driver. We’ll fix that as well later on.

The thread created starts running the PlayMelody function - a static function in the PlaybackState
class. Callbacks must be global or static functions (because they are directly C function pointers), but in
this case we would like to access the members of this instance of PlaybackState. The common trick is to
pass the this pointer as the thread argument, and the callback simply invokes an instance method using
this pointer:

// static function

void PlaybackState::PlayMelody(PVOID context) {

((PlaybackState*)context)->PlayMelody();

}

Now the instance method PlaybackState::PlayMelody has full access to the object’s members.

There is another way to invoke the instance method without going through the intermediate
static by using C++ lambda functions, as non-capturing lambdas are directly convertible to C
function pointers:

IoCreateSystemThread(..., [](auto param) {

((PlaybackState*)param)->PlayMelody();

}, this);

The

first order of business in the new thread is to obtain a pointer to the Beep device using
IoGetDeviceObjectPointer:

#include <ntddbeep.h>

void PlaybackState::PlayMelody() {

PDEVICE_OBJECT beepDevice;

UNICODE_STRING beepDeviceName = RTL_CONSTANT_STRING(DD_BEEP_DEVICE_NAME_U);

PFILE_OBJECT beepFileObject;

auto status = IoGetDeviceObjectPointer(&beepDeviceName, GENERIC_WRITE,

&beepFileObject, &beepDevice);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Failed to locate beep device (0x%X)\n",

status));

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 250

return;

}

The Beep device name is \Device\Beep as we’ve seen in chapter 2. Conveniently, the provided header
ntddbeep.h declares everything we need in order to work with the device, such as the DD_BEEP_DEVICE_-
NAME_U macro that defines the Unicode name.

At this point, the thread should loop around while it has notes to play and has not been instructed to
terminate. This is where the semaphore and the event come in. The thread must wait until one of them is
signaled. If it’s the event, it should break out of the loop. If it’s the semaphore, it means the semaphore’s
count is greater than zero, which in turn means the list of notes is not empty:

PVOID objects[] = { &m_counter, &m_stopEvent };

IO_STATUS_BLOCK ioStatus;

BEEP_SET_PARAMETERS params;

for (;;) {

status = KeWaitForMultipleObjects(2, objects, WaitAny, Executive,

KernelMode, FALSE, nullptr, nullptr);

if (status == STATUS_WAIT_1) {

KdPrint((DRIVER_PREFIX "Stop event signaled. Exiting thread...\n"));

break;

}

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",

KeReadStateSemaphore(&m_counter)));

The required fucntion call is to KeWaitForMultipleObjects with the event and semaphore. They are
put in an array, since this is the requirement for KeWaitForMultipleObjects. If the returned status is
STATUS_WAIT_1 (which is the same as STATUS_WAIT_0 + 1), meaning index number 1 is the signaled
object, the loop is exited with a break instruction.

Now we need to extract the next note to play:

PLIST_ENTRY link;

{

Locker locker(m_lock);

link = RemoveHeadList(&m_head);

NT_ASSERT(link != &m_head);

}

auto note = CONTAINING_RECORD(link, FullNote, Link);

KdPrint((DRIVER_PREFIX "Playing note Freq: %u Dur: %u Rep: %u Delay: %u\n",

note->Frequency, note->Duration, note->Repeat, note->Delay));

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 251

We remove the head item from the list, and doing so under the fast mutex’ protection. The assert ensures
we are in a consistent state - remember that removing an item from an empty list returns the pointer to
its head.

The actual FullNote pointer is retrieved with the help of the CONTAINING_RECORDmacro, that moves the
LIST_ENTRY pointer we received from RemoveHeadList to the containing FullNode that we are actually
interested in.

The next step is to handle the note. If the note’s frequency is zero, let’s consider that as a “silence time”
with the length provided by Delay:

if (note->Frequency == 0) {

//

// just do a delay

//

NT_ASSERT(note->Duration > 0);

LARGE_INTEGER interval;

interval.QuadPart = -10000LL * note->Duration;

KeDelayExecutionThread(KernelMode, FALSE, &interval);

}

KeDelayExecutionThread is the rough equivalent of the Sleep/SleepEx APIs from user-mode. Here is
its declaration:

NTSTATUS KeDelayExecutionThread (

In KPROCESSOR_MODE WaitMode,

In BOOLEAN Alertable,

In PLARGE_INTEGER Interval);

We’ve seen all these parameters as part of the wait functions. The most common invocation is with
KernelMode and FALSE for WaitMode and Alertable, respectively. The interval is the most important
parameter, where negative values mean relative wait in 100nsec units. Converting from milliseconds
means multiplying by -10000, which is what you see in the above code.

If the frequency in the note is not zero, then we need to call the Beep driver with proper IRP. We
already know that we need the IOCTL_BEEP_SET control code (defined in ntddbeep.h) and the BEEP_-
SET_PARAMETERS structure. All we need to do is build an IRP with the correct information using
IoBuildDeviceIoControlRequest, and send it to the beep device with IoCallDriver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 252

else {

params.Duration = note->Duration;

params.Frequency = note->Frequency;

int count = max(1, note->Repeat);

KEVENT doneEvent;

KeInitializeEvent(&doneEvent, NotificationEvent, FALSE);

for (int i = 0; i < count; i++) {

auto irp = IoBuildDeviceIoControlRequest(IOCTL_BEEP_SET, beepDevice,

¶ms, sizeof(params),

nullptr, 0, FALSE, &doneEvent, &ioStatus);

if (!irp) {

KdPrint((DRIVER_PREFIX "Failed to allocate IRP\n"));

break;

}

status = IoCallDriver(beepDevice, irp);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Beep device playback error (0x%X)\n",

status));

break;

}

if (status == STATUS_PENDING) {

KeWaitForSingleObject(&doneEvent, Executive, KernelMode,

FALSE, nullptr);

}

We loop around based on the Repeatmember (which is usually 1). Then the IRP_MJ_DEVICE_CONTROL IRP
is built with IoBuildDeviceIoControlRequest, supplying the frequency to play and the duration. Then,
IoCallDriver is invoked with the Beep device pointer we obtained earlier, and the IRP. Unfortunately
(or futunately, depending on your perspective), the Beep driver just starts the operation, but does not
wait for it to finish. It might (and in fact, always) returns STATUS_PENDING from the IoCallDriver call,
which means the operation is not yet complete (the actual playing has not yet begun). Since we don’t have
anything else to do until then, the doneEvent event provided to IoBuildDeviceIoControlRequest is
signaled automatically by the I/O manager when the operation completes - so we wait on the event.

Now that the sound is playing, we have towait for the duration of that notewith KeDelayExecutionThread:

LARGE_INTEGER delay;

delay.QuadPart = -10000LL * note->Duration;

KeDelayExecutionThread(KernelMode, FALSE, &delay);

Finally, if Repeat is greater than one, then we might need to wait between plays of the same note:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 253

// perform the delay if specified,

// except for the last iteration

//

if (i < count - 1 && note->Delay != 0) {

delay.QuadPart = -10000LL * note->Delay;

KeDelayExecutionThread(KernelMode, FALSE, &delay);

}

}

}

At this point, the note data can be freed (or just returned to the lookaside list) and the code loops back to
wait for the availability of the next note:

ExFreeToPagedLookasideList(&m_lookaside, note);

}

The loop continues until the thread is instructed to stop by signaling stopEvent, at which point it breaks
from the infinite loop and cleans up by dereferencing the file object obtained from
IoGetDeviceObjectPointer:

ObDereferenceObject(beepFileObject);

}

Here is the entire thread function for convenience (comments and KdPrint removed):

void PlaybackState::PlayMelody() {

PDEVICE_OBJECT beepDevice;

UNICODE_STRING beepDeviceName = RTL_CONSTANT_STRING(DD_BEEP_DEVICE_NAME_U);

PFILE_OBJECT beepFileObject;

auto status = IoGetDeviceObjectPointer(&beepDeviceName, GENERIC_WRITE,

&beepFileObject, &beepDevice);

if (!NT_SUCCESS(status)) {

return;

}

PVOID objects[] = { &m_counter, &m_stopEvent };

IO_STATUS_BLOCK ioStatus;

BEEP_SET_PARAMETERS params;

for (;;) {

status = KeWaitForMultipleObjects(2, objects, WaitAny, Executive,

KernelMode, FALSE, nullptr, nullptr);

if (status == STATUS_WAIT_1) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 254

break;

}

PLIST_ENTRY link;

{

Locker locker(m_lock);

link = RemoveHeadList(&m_head);

NT_ASSERT(link != &m_head);

}

auto note = CONTAINING_RECORD(link, FullNote, Link);

if (note->Frequency == 0) {

NT_ASSERT(note->Duration > 0);

LARGE_INTEGER interval;

interval.QuadPart = -10000LL * note->Duration;

KeDelayExecutionThread(KernelMode, FALSE, &interval);

}

else {

params.Duration = note->Duration;

params.Frequency = note->Frequency;

int count = max(1, note->Repeat);

KEVENT doneEvent;

KeInitializeEvent(&doneEvent, SynchronizationEvent, FALSE);

for (int i = 0; i < count; i++) {

auto irp = IoBuildDeviceIoControlRequest(IOCTL_BEEP_SET,

beepDevice, ¶ms, sizeof(params),

nullptr, 0, FALSE, &doneEvent, &ioStatus);

if (!irp) {

break;

}

NT_ASSERT(irp->UserEvent == &doneEvent);

status = IoCallDriver(beepDevice, irp);

if (!NT_SUCCESS(status)) {

break;

}

if (status == STATUS_PENDING) {

KeWaitForSingleObject(&doneEvent, Executive,

KernelMode, FALSE, nullptr);

}

LARGE_INTEGER delay;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 255

delay.QuadPart = -10000LL * note->Duration;

KeDelayExecutionThread(KernelMode, FALSE, &delay);

if (i < count - 1 && note->Delay != 0) {

delay.QuadPart = -10000LL * note->Delay;

KeDelayExecutionThread(KernelMode, FALSE, &delay);

}

}

}

ExFreeToPagedLookasideList(&m_lookaside, note);

}

ObDereferenceObject(beepFileObject);

}

The last piece of the puzzle is the PlaybackState::Stop method that signals the thread to exit:

void PlaybackState::Stop() {

if (m_hThread) {

//

// signal the thread to stop

//

KeSetEvent(&m_stopEvent, 2, FALSE);

//

// wait for the thread to exit

//

PVOID thread;

auto status = ObReferenceObjectByHandle(m_hThread, SYNCHRONIZE,

*PsThreadType, KernelMode, &thread, nullptr);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "ObReferenceObjectByHandle error (0x%X)\n",

status));

}

else {

KeWaitForSingleObject(thread, Executive, KernelMode, FALSE, nullptr\

);

ObDereferenceObject(thread);

}

ZwClose(m_hThread);

m_hThread = nullptr;

}

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 256

If the thread exists (m_hThread is non-NULL), then we set the event (KeSetEvent). Then we wait for
the thread to actually terminate. This is technically unnecessary because the thread was created with
IoCreateSystemThread, so there is no danger the driver is unloaded prematurely. Still, it’s worthwhile
showing how to get the pointer to the thread object given a handle (since KeWaitForSingleObject
requires an object). It’s important to remember to call ObDereferenceObject once we don’t need the
pointer anymore, or the thread object will remain alive forever (keeping its process and other resources
alive as well).

Client Code

Here are some examples for invoking the driver (error handling omitted):

#include <Windows.h>

#include <stdio.h>

#include "..\KMelody\MelodyPublic.h"

int main() {

HANDLE hDevice = CreateFile(MELODY_SYMLINK, GENERIC_WRITE, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

Note notes[10];

for (int i = 0; i < _countof(notes); i++) {

notes[i].Frequency = 400 + i * 30;

notes[i].Duration = 500;

}

DWORD bytes;

DeviceIoControl(hDevice, IOCTL_MELODY_PLAY, notes, sizeof(notes),

nullptr, 0, &bytes, nullptr);

for (int i = 0; i < _countof(notes); i++) {

notes[i].Frequency = 1200 - i * 100;

notes[i].Duration = 300;

notes[i].Repeat = 2;

notes[i].Delay = 300;

}

DeviceIoControl(hDevice, IOCTL_MELODY_PLAY, notes, sizeof(notes),

nullptr, 0, &bytes, nullptr);

CloseHandle(hDevice);

return 0;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 257

I recommend you build the driver and the client and test them. The project names are KMelody and
Melody in the solution for this chapter. Build your own music!

1. Replace the call to IoCreateSystemThreadwith PsCreateSystemThread andmake the
necessary adjustments.

2. Replace the lookaside list API with the newer API.

Invoking System Services

System Services (system calls) are normally invoked indirectly from user mode code. For example, calling
theWindows CreateFileAPI in user mode invokes NtCreateFile from NtDll.Dll, which is a system call.
This call traverses the user/kernel boundary, eventually calling the “real” NtCreateFile implementation
within the executive.

We already know that drivers can invoke system calls as well, using the Nt or the Zw variant (which sets
the previous execution mode to KernelMode before invoking the system call). Some of these system calls
are fully documented in the driver kit, such as NtCreateFile/ZwCreateFile. Others, however, are not
documented or sometimes partially documented.

For example, enumerating processes in the system is fairly easy to do from user-mode - in fact, there
are several APIs one can use for this purpose. They all invoke the NtQuerySystemInformation system
call, which is not officially documented in the WDK. Ironically, it’s provided in the user-mode header
Winternl.h like so:

NTSTATUS NtQuerySystemInformation (

IN SYSTEM_INFORMATION_CLASS SystemInformationClass,

OUT PVOID SystemInformation,

IN ULONG SystemInformationLength,

OUT PULONG ReturnLength OPTIONAL);

The macros IN and OUT expand to nothing. These were used in the old days before SAL was invented to
provide some semantics for developers. For some reason, Winternl.h uses these macros rather than the
modern SAL annotations.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 258

We can copy this definition and tweak it a bit by turning it into its Zw variant, more suitable for kernel
callers. The SYSTEM_INFORMATION_CLASS enumeration and associated data structures are the real data
we’re after. Some values are provided in user-mode and/or kernel-mode headers. Most of the values have
been “reversed engineered” and can be found in open source projects, such as Process Hacker². Although
these APIs might not be officially documented, they are unlikely to change asMicrosoft’s own tools depend
on many of them.

If the API in question only exists in certain Windows versions, it’s possible to query dynamically for the
existence of a kernel API with MmGetSystemRoutineAddress:

PVOID MmGetSystemRoutineAddress (_In_ PUNICODE_STRING SystemRoutineName);

You can think of MmGetSystemRoutineAddress as the kernel-mode equivalent of the user-mode
GetProcAddress API.

Another very useful API is NtQueryInformationProcess, also defined inWinternl.h:

NTAPI NtQueryInformationProcess (

IN HANDLE ProcessHandle,

IN PROCESSINFOCLASS ProcessInformationClass,

OUT PVOID ProcessInformation,

IN ULONG ProcessInformationLength,

OUT PULONG ReturnLength OPTIONAL);

Curiously enough, the kernel-mode headers provide many of the PROCESSINFOCLASS enumeration values,
along with their associated data structures, but not the definition of this system call itself. Here is a partial
set of values for PROCESSINFOCLASS:

typedef enum _PROCESSINFOCLASS {

ProcessBasicInformation = 0,

ProcessDebugPort = 7,

ProcessWow64Information = 26,

ProcessImageFileName = 27,

ProcessBreakOnTermination = 29

} PROCESSINFOCLASS;

A more complete list is available in ntddk.h. A full list is available within the Process Hacker
project.

The following example shows how to query the current process image file name. ProcessImageFileName
seems to be the way to go, and it expects a UNICODE_STRING as the buffer:

²https://github.com/processhacker/phnt

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/processhacker/phnt
https://github.com/processhacker/phnt

Chapter 8: Advanced Programming Techniques (Part 1) 259

ULONG size = 1024;

auto buffer = ExAllocatePoolWithTag(PagedPool, size, DRIVER_TAG);

auto status = ZwQueryInformationProcess(NtCurrentProcess(),

ProcessImageFileName, buffer, size, nullptr);

if(NT_SUCCESS(status)) {

auto name = (UNICODE_STRING*)buffer;

// do something with name...

}

ExFreePool(buffer);

Example: Enumerating Processes

The EnumProc driver shows how to call ZwQuerySystemInformation to retrieve the list of running
processes. DriverEntry calls the EnumProcesses function that does all the work and dumps information
using simple DbgPrint calls. Then DriverEntry returns an error so the driver is unloaded.

First, we need the definition of ZwQuerySystemInformation and the required enum value and structure
which we can copy fromWinternl.h:

#include <ntddk.h>

// copied from <WinTernl.h>

enum SYSTEM_INFORMATION_CLASS {

SystemProcessInformation = 5,

};

typedef struct _SYSTEM_PROCESS_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

UCHAR Reserved1[48];

UNICODE_STRING ImageName;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

PVOID Reserved2;

ULONG HandleCount;

ULONG SessionId;

PVOID Reserved3;

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG Reserved4;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

PVOID Reserved5;

SIZE_T QuotaPagedPoolUsage;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 260

PVOID Reserved6;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivatePageCount;

LARGE_INTEGER Reserved7[6];

} SYSTEM_PROCESS_INFORMATION, * PSYSTEM_PROCESS_INFORMATION;

extern "C" NTSTATUS ZwQuerySystemInformation(

SYSTEM_INFORMATION_CLASS info,

PVOID buffer,

ULONG size,

PULONG len);

Notice there are lots of “reserved” members in SYSTEM_PROCESS_INFORMATION. We’ll manage with what
we get, but you can find the full data structure in the Process Hacker project.

EnumProcesses starts by querying the number of bytes needed by calling ZwQuerySystemInformation
with a null buffer and zero size, getting the last parameter as the required size:

void EnumProcesses() {

ULONG size = 0;

ZwQuerySystemInformation(SystemProcessInformation, nullptr, 0, &size);

size += 1 << 12; // 4KB, just to make sure the next call succeeds

We want to allocate some more in case new processes are created between this call and the next “real” call.
We can write the code in a more robust way and have a loop that queries until the size is large enough,
but the above solution is robust enough for most purposes.

Next, we allocate the required buffer and make the call again, this time with the real buffer:

auto buffer = ExAllocatePoolWithTag(PagedPool, size, 'cprP');

if (!buffer)

return;

if (NT_SUCCESS(ZwQuerySystemInformation(SystemProcessInformation,

buffer, size, nullptr))) {

if the call succeeds, we can start iterating. The returned pointer is to the first process, where the next process
is located NextEntryOffset bytes from this offset. The enumeration ends when NextEntryOffset is zero:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 261

auto info = (SYSTEM_PROCESS_INFORMATION*)buffer;

ULONG count = 0;

for (;;) {

DbgPrint("PID: %u Session: %u Handles: %u Threads: %u Image: %wZ\n",

HandleToULong(info->UniqueProcessId),

info->SessionId, info->HandleCount,

info->NumberOfThreads, info->ImageName);

count++;

if (info->NextEntryOffset == 0)

break;

info = (SYSTEM_PROCESS_INFORMATION*)((PUCHAR)info + info->NextEntryOffset);

}

DbgPrint("Total Processes: %u\n", count);

We output some of the details provided in the SYSTEM_PROCESS_INFORMATION structure and count the
nnumber of processes while we’re at it. The only thing left to do in this simple example is to clean up:

}

ExFreePool(buffer);

}

As mentioned, DriverEntry is simple:

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

UNREFERENCED_PARAMETER(DriverObject);

UNREFERENCED_PARAMETER(RegistryPath);

EnumProcesses();

return STATUS_UNSUCCESSFUL;

}

Given this knowledge, we can make the KMelody driver a bit better by creating our thread in a Csrss.exe
process for the current session, instead of the first client process that comes in. This is better, since Csrss
always exists, and is in fact a critical process - one that if killed for whatever reason, causes the system to
crash.

Killing Csrss is not easy, since it’s a protected process starting with Windows 8.1, but kernel code can
certainly do that.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 8: Advanced Programming Techniques (Part 1) 262

1. Modify the KMelody driver to create the thread in a Csrss process for the current
session. Search for Csrss with ZwQuerySystemInformation and create the thread in
that process.

2. Add support for multiple sessions, where there is one playback thread per session. Hint:
call ZwQueryInformationProcess with ProcessSessionId to find out the session a
process is part of. Manage a list of PlaybackState objects, one for each session. You
can also use the undocumented (but exported) PsGetCurrentProcessSessionId API.

Summary

In this chapter, we were introduced to some programming techniques that are useful in many types of
drivers. We’re not done with these techniques - there will be more in chapter 11. But for now, we can
begin using some kernel-provided notifications, starting with Process and Thread notifications in the next
chapter.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread
Notifications
One of the powerful mechanisms available for kernel drivers is the ability to be notified when certain
important events occur. In this chapter, we’ll look into some of these events, namely process creation and
destruction, thread creation and destruction, and image loads.

In this chapter:

• Process Notifications
• Implementing Process Notifications
• Providing Data to User Mode
• Thread Notifications
• Image Load Notifications
• Remote Thread Detection

Process Notifications

Whenever a process is created or destroyed, interested drivers can be notified by the kernel of that fact.
This allows drivers to keep track of processes, possibly associating some data with these processes. At the
very minimum, these allow drivers to monitor process creation/destruction in real-time. By “real-time”
I mean that the notifications are sent “in-line”, as part of process creation; the driver cannot miss any
processes that may be created and destroyed quickly.

For process creation, drivers also have the power to stop the process from being fully created, returning
an error to the caller that initiated process creation. This kind of power can only be directly achieved in
kernel mode.

Windows provides other mechanisms for being notified when processes are created or destroyed. For
example, using Event Tracing for Windows (ETW), such notifications can be received by a user-mode
process (running with elevated privileges). However, there is no way to prevent a process from being
created. Furthermore, ETW has an inherent notification delay of about 1-3 seconds (it uses internal
buffers for performance reasons), so a short-lived process may exit before the creation notification arrives.
Opening a handle to the created process at that time would no longer be possible.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 264

The main API for registering for process notifications is PsSetCreateProcessNotifyRoutineEx, defined
like so:

NTSTATUS PsSetCreateProcessNotifyRoutineEx (

In PCREATE_PROCESS_NOTIFY_ROUTINE_EX NotifyRoutine,

In BOOLEAN Remove);

There is currently a system-wide limit of 64 registrations, so it’s theoretically possible for the
registration function to fail.

The first argument is the driver’s callback routine, having the following prototype:

void ProcessNotifyCallback(

Inout PEPROCESS Process,

In HANDLE ProcessId,

_Inout_opt_ PPS_CREATE_NOTIFY_INFO CreateInfo);

The second argument to PsSetCreateProcessNotifyRoutineEx indicates whether the driver is register-
ing or unregistering the callback (FALSE indicates the former). Typically, a driver will call this API with
FALSE in its DriverEntry routine and call the same API with TRUE in its Unload routine.

The parameters to the process notification routine are as follows:

• Process - the process object of the newly created process, or the process being destroyed.
• Process Id - the unique process ID of the process. Although it’s declared with type HANDLE, it’s in
fact an ID.

• CreateInfo - a structure that contains detailed information on the process being created. If the process
is being destroyed, this argument is NULL.

For process creation, the driver’s callback routine is executed by the creating thread (running as part of
the creating process). For process exit, the callback is executed by the last thread to exit the process. In
both cases, the callback is called inside a critical region (where normal kernel APCs are disabled).

Starting with Windows 10 version 1607, there is another function for process notifications:
PsSetCreateProcessNotifyRoutineEx2. This “extended” function sets up a callback similar to the
previous one, but the callback is also invoked for Pico processes. Pico processes are those used to host
Linux processes for the Windows Subsystem for Linux (WSL) version 1. If a driver is interested in such
processes, it must register with the extended function.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 265

A driver using these callbacks must have the IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY flag in its
Portable Executable (PE) image header. Without it, the call to the registration function returns STATUS_-
ACCESS_DENIED (unrelated to driver test signing mode). Currently, Visual Studio does not provide UI for
setting this flag. It must be set in the linker command-line options with /integritycheck. Figure 9-1
shows the project properties where this setting is specified.

Figure 9-1: /integritycheck linker switch in Visual Studio

The data structure provided for process creation is defined like so:

typedef struct _PS_CREATE_NOTIFY_INFO {

In SIZE_T Size;

union {

In ULONG Flags;

struct {

In ULONG FileOpenNameAvailable : 1;

In ULONG IsSubsystemProcess : 1;

In ULONG Reserved : 30;

};

};

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 266

In HANDLE ParentProcessId;

In CLIENT_ID CreatingThreadId;

Inout struct _FILE_OBJECT *FileObject;

In PCUNICODE_STRING ImageFileName;

_In_opt_ PCUNICODE_STRING CommandLine;

Inout NTSTATUS CreationStatus;

} PS_CREATE_NOTIFY_INFO, *PPS_CREATE_NOTIFY_INFO;

Here is a description of the important fields in this structure:

• CreatingThreadId - a combination of thread and process Id of the creator of the process.
• ParentProcessId - the parent process ID (not a handle). This process is usually the same as provided
by CreateThreadId.UniqueProcess, but may be different, as it’s possible, as part of process
creation, to pass in a different parent process to inherit certain properties from. See the user-mode
documentation for UpdateProcThreadAttribute with the PROC_THREAD_ATTRIBUTE_PARENT_-
PROCESS attribute.

• ImageFileName - the image file name of the executable, available if the flag FileOpenNameAvailable
is set.

• CommandLine - the full command line used to create the process. Note that in some cases it may
be NULL.

• IsSubsystemProcess - this flag is set if this process is a Pico process. This can only happen if the
driver registered using PsSetCreateProcessNotifyRoutineEx2.

• CreationStatus - this is the status that would return to the caller. It’s set to STATUS_SUCCESS when
the callback is invoked. This is where the driver can stop the process from being created by placing
some failure status in this member (e.g. STATUS_ACCESS_DENIED). if the driver fails the creation,
subsequent drivers that may have set up their own callbacks will not be called.

Implementing Process Notifications

To demonstrate process notifications, we’ll build a driver that gathers information on process creation
and destruction and allow this information to be consumed by a user-mode client. This is similar to tools
such as Process Monitor and SysMon from Sysinternals, which use process and thread notifications for
reporting process and thread activity. During the course of implementing this driver, we’ll leverage some
of the techniques we learned in previous chapters.

Our driver name is going to be SysMon (unrelated to the SysMon tool). It will store all process creation/de-
struction information in a linked list. Since this linked list may be accessed concurrently by multiple
threads, we need to protect it with a mutex or a fast mutex; we’ll go with fast mutex, as it’s slightly more
efficient.

The data we gather will eventually find its way to user mode, so we should declare common structures that
the driver produces and a user-mode client consumes. We’ll add a common header file named SysMonPub-
lic.h to the driver project and define a few structures. We start with a common header for all information
structures we need to collect:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 267

enum class ItemType : short {

None,

ProcessCreate,

ProcessExit

};

struct ItemHeader {

ItemType Type;

USHORT Size;

LARGE_INTEGER Time;

};

The ItemType enum defined above uses the C++ 11 scoped enum feature, where enum values
have a scope (ItemType in this case). These enums can also have a non-int size - short in the
example. If you’re using C, you can use classic enums, or even #defines if you prefer.

The ItemHeader structure holds information common to all event types: the type of the event, the time of
the event (expressed as a 64-bit integer), and the size of the payload. The size is important, as each event
has its own information. If we later wish to pack an array of these events and (say) provide them to a
user-mode client, the client needs to know where each event ends and the next one begins.

Once we have this common header, we can derive other data structures for particular events. Let’s start
with the simplest - process exit:

struct ProcessExitInfo : ItemHeader {

ULONG ProcessId;

ULONG ExitCode;

};

For process exit event, there is just one interesting piece of information (besides the header and the thread
ID) - the exit status (code) of the process. This is normally the value returned from a user-mode main
function.

If you’re using C, then inheritance is not available to you. However, you can simulate it by
having the first member be of type ItemHeader and then adding the specific members; The
memory layout is the same.

struct ProcessExitInfo {

ItemHeader Header;

ULONG ProcessId;

};

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 268

The type used for a process ID is ULONG - process IDs (and thread IDs) cannot be larger than 32-bit.
HANDLE is not a good idea, as user mode may be confused by it. Also, HANDLE has a different size in a
32-bit process as opposed to a 64-bit process, so it’s best to avoid “bitness”-affected members. If you’re
familiar with user-mode programming, DWORD is a common typedef for a 32-bit unsigned integer. It’s
not used here because DWORD is not defined in the WDK headers. Although it’s pretty easy to define it
explicitly, it’s simpler just to use ULONG, which means the same thing and is defined in user-mode and
kernel-mode headers.

Since we need to store every such structure as part of a linked list, each data structure must contain a
LIST_ENTRY instance that points to the next and previous items. Since these LIST_ENTRY objects should
not be exposed to user-mode, we will define extended structures containing these entries in a different file,
that is not shared with user-mode.

There are several ways to define a “bigger” structure to hold the LIST_ENTRY. One way is to create
templated type that has a LIST_ENTRY at the beginning (or end) like so:

template<typename T>

struct FullItem {

LIST_ENTRY Entry;

T Data;

};

The layout of FullItem<T> is shown in figure 9-2.

Figure 9-2: FullItem<T> layout

A templated class is used to avoid creating a multitude of types, one for each specific event type. For
example, we could create the following structure specifically for a process exit event:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 269

struct FullProcessExitInfo {

LIST_ENTRY Entry;

ProcessExitInfo Data;

};

We could even inherit from LIST_ENTRY and then just add the ProcessExitInfo structure. But this is
not elegant, as our data has nothing to do with LIST_ENTRY, so inheriting from it is artificial and should
be avoided.

The FullItem<T> type saves the hassle of creating these individual types.

IF you’re using C, then templates are not available, and you must use the above structure
approach. I’m not going to mention C again in this chapter - there is always a workaround that
can be used if you have to.

Another way to accomplish something similar, without using templates is by using a union to hold on to
all the possible variants. For example:

struct ItemData : ItemHeader {

union {

ProcessCreateInfo ProcessCreate; // TBD

ProcessExitInfo ProcessExit;

};

};

Then we just extend the list of data members in the union. The full item would be just a simple extension:

struct FullItem {

LIST_ENTRY Entry;

ItemData Data;

};

The rest of the code uses the first option (with the template). The reader is encouraged to try the second
option.

The head of our linked list must be stored somewhere. We’ll create a data structure that will hold all
the global state of the driver, instead of creating separate global variables. Here is the definition of our
structure (in Globals.h in the smaple code for this chapter):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 270

#include "FastMutex.h"

struct Globals {

void Init(ULONG maxItems);

bool AddItem(LIST_ENTRY* entry);

LIST_ENTRY* RemoveItem();

private:

LIST_ENTRY m_ItemsHead;

ULONG m_Count;

ULONG m_MaxCount;

FastMutex m_Lock;

};

The FastMutex type used is the same one we developed in chapter 6.

Init is used to initialize the data members of the structure. Here is its implementation (in Globals.cpp):

void Globals::Init(ULONG maxCount) {

InitializeListHead(&m_ItemsHead);

m_Lock.Init();

m_Count = 0;

m_MaxCount = maxCount;

}

m_MaxCount holds the maximum number of elements in the linked list. This will be used to prevent the
list from growing arbitrarily large if a client does not request data for a while. m_Count holds the current
number of items in the list. The list itself is initialized with the normal InitializeListHead API. Finally,
the fast mutex is initialized by invoking its own Init method as implemented in chapter 6.

The DriverEntry Routine

The DriverEntry for the SysMon driver is similar to the one in the Zero driver from chapter 7. We have
to add process notification registration and proper initialization of our Globals object:

// in SysMon.cpp

Globals g_State;

extern "C"

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

auto status = STATUS_SUCCESS;

PDEVICE_OBJECT DeviceObject = nullptr;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 271

bool symLinkCreated = false;

do {

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\sysmon");

status = IoCreateDevice(DriverObject, 0, &devName,

FILE_DEVICE_UNKNOWN, 0, TRUE, &DeviceObject);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create device (0x%08X)\n",

status));

break;

}

DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create sym link (0x%08X)\n",

status));

break;

}

symLinkCreated = true;

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX

"failed to register process callback (0x%08X)\n",

status));

break;

}

} while (false);

if (!NT_SUCCESS(status)) {

if (symLinkCreated)

IoDeleteSymbolicLink(&symLink);

if (DeviceObject)

IoDeleteDevice(DeviceObject);

return status;

}

g_State.Init(10000); // hard-coded limit for now

DriverObject->DriverUnload = SysMonUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = SysMonCreateClose;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 272

DriverObject->MajorFunction[IRP_MJ_READ] = SysMonRead;

return status;

}

The device object’s flags are adjusted to use Direct I/O for read/write operations (DO_DIRECT_IO). The
device is created as exclusive, so that only a single client can exist to the device. This makes sense, otherwise
multiple clients might be getting data from the device, which would mean each client getting parts of the
data. In this case, I decided to prevent that by creating the device as exclusive (TRUE value in the second
to last argument). We’ll use the read dispatch routine to return event information to a client.

The create and close dispatch routines are handled in the simplest possible way - just completing them
successfully, with the help of CompleteRequest we have encountered before:

NTSTATUS CompleteRequest(PIRP Irp,

NTSTATUS status = STATUS_SUCCESS, ULONG_PTR info = 0) {

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = info;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

NTSTATUS SysMonCreateClose(PDEVICE_OBJECT, PIRP Irp) {

return CompleteRequest(Irp);

}

Handling Process Exit Notifications

The process notification function in the code above is OnProcessNotify and has the prototype outlined
earlier in this chapter. This callback handles process creation and exit. Let’s start with process exit, as it’s
much simpler than process creation (as we shall soon see). The basic outline of the callback is as follows:

void OnProcessNotify(PEPROCESS Process, HANDLE ProcessId,

PPS_CREATE_NOTIFY_INFO CreateInfo) {

if (CreateInfo) {

// process create

}

else {

// process exit

}

}

For process exit we have just the process ID we need to save, along with the header data common to all
events. First, we need to allocate storage for the full item representing this event:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 273

auto info = (FullItem<ProcessExitInfo>*)ExAllocatePoolWithTag(PagedPool,

sizeof(FullItem<ProcessExitInfo>), DRIVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

}

If the allocation fails, there is really nothing the driver can do, so it just returns from the callback.

Now it’s time to fill the generic information: time, item type and size, all of which are easy to get:

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType::ProcessExit;

item.Size = sizeof(ProcessExitInfo);

item.ProcessId = HandleToULong(ProcessId);

item.ExitCode = PsGetProcessExitStatus(Process);

PushItem(&info->Entry);

First, we dig into the data item itself (bypassing the LIST_ENTRY) with the item variable. Next, we fill
the header information: The item type is well-known, since we are in the branch handling a process
exit notification; the time can be obtained with KeQuerySystemTimePrecise that returns the current
system time (UTC, not local time) as a 64-bit integer counting from January 1, 1601 at midnight Universal
Time. Finally, the item size is constant and is the size of the user-facing data structure (not the size of the
FullItem<ProcessExitInfo>).

Notice the item variable is a reference to the data; without the reference (&), a copy would have
been created, which is not what we want.

The KeQuerySystemTimePrecise API is available starting with Windows 8. For earlier
versions, the KeQuerySystemTime API should be used instead.

The specific data for a process exit event consists of the process ID and the exit code. The process ID is
provided directly by the callback itself. The only thing to do is call HandleToULong so the correct cast is
used to turn a HANDLE value into an unsigned 32-bit integer. The exit code is not given directly, but it’s
easy to retrieve with PsGetProcessExitStatus:

NTSTATUS PsGetProcessExitStatus(_In_ PEPROCESS Process);

All that’s left to do now is add the new item to the end of our linked list. For this purpose, we’ll define and
implement a function named AddItem in the Globals class:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 274

void Globals::AddItem(LIST_ENTRY* entry) {

Locker locker(m_Lock);

if (m_Count == m_MaxCount) {

auto head = RemoveHeadList(&m_ItemsHead);

ExFreePool(CONTAINING_RECORD(head,

FullItem<ItemHeader>, Entry));

m_Count--;

}

InsertTailList(&m_ItemsHead, entry);

m_Count++;

}

AddItem uses the Locker<T> we saw in earlier chapters to acquire the fast mutex (and release it when the
variable goes out of scope) before manipulating the linked list. Remember to set the C++ standard to C++
17 at least in the project’s properties so that Locker can be used without explicitly specifying the type it
works on (the compiler makes the inference).

We’ll add new items to the tail of the list. If the number of items in the list is at its maximum, the function
removes the first item (from the head) and frees it with ExFreePool, decrementing the item count.

This is not the only way to handle the case where the number of items is too large. Feel free to use other
ways. A more “precise” way might be tracking the number of bytes used, rather than number of items,
because each item is different in size.

We don’t need to use atomic increment/decrement operations in the AddItem function because
manipulation of the item count is always done under the protection of the fast mutex.

With AddItem implemented, we can call it from our process notify routine:

g_State.AddItem(&info->Entry);

Implement the limit by reading from the registry in DriverEntry. Hint: you can use APIs such
as ZwOpenKey or IoOpenDeviceRegistryKey and then ZwQueryValueKey. We’ll look at these
APIs more closely in chapter 11.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 275

Handling Process Create Notifications

Process create notifications are more complex because the amount of information varies. The command
line length is different for different processes. First we need to decide what information to store for process
creation. Here is a first try:

struct ProcessCreateInfo : ItemHeader {

ULONG ProcessId;

ULONG ParentProcessId;

WCHAR CommandLine[1024];

};

We choose to store the process ID, the parent process ID and the command line. Although this structure
can work and is fairly easy to deal with because its size is known in advance.

What might be an issue with the above declaration?

The potential issue here is with the command line. Declaring the command line with constant size is simple,
but not ideal. If the command line is longer than allocated, the driver would have to trim it, possibly hiding
important information. If the command line is shorter than the defined limit, the structure is wasting
memory.

Can we use something like this?

struct ProcessCreateInfo : ItemHeader {

ULONG ProcessId;

ULONG ParentProcessId;

UNICODE_STRING CommandLine; // can this work?

};

This

cannot work. First, UNICODE_STRING is not normally defined in user mode headers. Secondly (and much
worse), the internal pointer to the actual characters normally would point to system space, inaccessible to
user-mode. Thirdly, how would that string be eventually freed?

Here is another option, which we’ll use in our driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 276

struct ProcessCreateInfo : ItemHeader {

ULONG ProcessId;

ULONG ParentProcessId;

ULONG CreatingThreadId;

ULONG CreatingProcessId;

USHORT CommandLineLength;

WCHAR CommandLine[1];

};

We’ll store the command line length and copy the actual characters at the end of the structure, starting
from CommandLine. The array size is specified as 1 just to make it easier to work with in the code. The
actual number of characters is provided by CommandLineLength.

Given this declaration, we can begin implementation for process creation (CreateInfo is non-NULL):

USHORT allocSize = sizeof(FullItem<ProcessCreateInfo>);

USHORT commandLineSize = 0;

if (CreateInfo->CommandLine) {

commandLineSize = CreateInfo->CommandLine->Length;

allocSize += commandLineSize;

}

auto info = (FullItem<ProcessCreateInfo>*)ExAllocatePoolWithTag(

PagedPool, allocSize, DRIVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

}

The total size for an allocation is based on the command line length (if any). Now it’s time to fill in the
fixed-size details:

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType::ProcessCreate;

item.Size = sizeof(ProcessCreateInfo) + commandLineSize;

item.ProcessId = HandleToULong(ProcessId);

item.ParentProcessId = HandleToULong(CreateInfo->ParentProcessId);

item.CreatingProcessId = HandleToULong(

CreateInfo->CreatingThreadId.UniqueProcess);

item.CreatingThreadId = HandleToULong(

CreateInfo->CreatingThreadId.UniqueThread);

The item size must be calculated to include the command line length.

Next, we need to copy the command line to the address where CommandLine begins, and set the correct
command line length:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 277

if (commandLineSize > 0) {

memcpy(item.CommandLine, CreateInfo->CommandLine->Buffer, commandLineSize);

item.CommandLineLength = commandLineSize / sizeof(WCHAR); // len in WCHARs

}

else {

item.CommandLineLength = 0;

}

g_State.AddItem(&info->Entry);

The command line length is stored in characters, rather than bytes. This is not mandatory, of course, but
would probably be easier to use by user mode code. Notice the command line is not NULL terminated - it’s
up to the client not read too many characters. As an alternative, we can make the string null terminated
to simplify client code. In fact, if we do that, the command line length is not even needed.

Make the command line NULL-terminated and remove the command line length.

Astute readers may notice that the calculated data length is actually one character longer than
needed, perfect for adding a NULL-terminator. Why? sizeof(ProcessCreateInfo) includes
one character of the command line.

For easier reference, here is the complete process notify callback implementation:

void OnProcessNotify(PEPROCESS Process, HANDLE ProcessId,

PPS_CREATE_NOTIFY_INFO CreateInfo) {

if (CreateInfo) {

USHORT allocSize = sizeof(FullItem<ProcessCreateInfo>);

USHORT commandLineSize = 0;

if (CreateInfo->CommandLine) {

commandLineSize = CreateInfo->CommandLine->Length;

allocSize += commandLineSize;

}

auto info = (FullItem<ProcessCreateInfo>*)ExAllocatePoolWithTag(

PagedPool, allocSize, DRIVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

}

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 278

item.Type = ItemType::ProcessCreate;

item.Size = sizeof(ProcessCreateInfo) + commandLineSize;

item.ProcessId = HandleToULong(ProcessId);

item.ParentProcessId = HandleToULong(CreateInfo->ParentProcessId);

item.CreatingProcessId = HandleToULong(

CreateInfo->CreatingThreadId.UniqueProcess);

item.CreatingThreadId = HandleToULong(

CreateInfo->CreatingThreadId.UniqueThread);

if (commandLineSize > 0) {

memcpy(item.CommandLine, CreateInfo->CommandLine->Buffer,

commandLineSize);

item.CommandLineLength = commandLineSize / sizeof(WCHAR);

}

else {

item.CommandLineLength = 0;

}

g_State.AddItem(&info->Entry);

}

else {

auto info = (FullItem<ProcessExitInfo>*)ExAllocatePoolWithTag(

PagedPool, sizeof(FullItem<ProcessExitInfo>), DRIVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

}

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType::ProcessExit;

item.ProcessId = HandleToULong(ProcessId);

item.Size = sizeof(ProcessExitInfo);

item.ExitCode = PsGetProcessExitStatus(Process);

g_State.AddItem(&info->Entry);

}

}

Providing Data to User Mode

The next thing to consider is how to provide the gathered information to a user-mode client. There are
several options that could be used, but for this driver we’ll let the client poll the driver for information

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 279

using a read request. The driver will fill the user-provided buffer with as many events as possible, until
either the buffer is exhausted or there are no more events in the queue.

We’ll start the read request by obtaining the address of the user’s buffer with Direct I/O (set up in
DriverEntry):

NTSTATUS SysMonRead(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto len = irpSp->Parameters.Read.Length;

auto status = STATUS_SUCCESS;

ULONG bytes = 0;

NT_ASSERT(Irp->MdlAddress); // we're using Direct I/O

auto buffer = (PUCHAR)MmGetSystemAddressForMdlSafe(

Irp->MdlAddress, NormalPagePriority);

if (!buffer) {

status = STATUS_INSUFFICIENT_RESOURCES;

}

Now we need to access our linked list and pull items from its head. We’ll add this support to the Global
class by implementing a method that removed an item from the head and returns it. If the list is empty, it
returns NULL:

LIST_ENTRY* Globals::RemoveItem() {

Locker locker(m_Lock);

auto item = RemoveHeadList(&m_ItemsHead);

if (item == &m_ItemsHead)

return nullptr;

m_Count--;

return item;

}

If the linked list is empty, RemoveHeadList returns the head itself. It’s also possible to use IsListEmpty
to make that determination. Lastly, we can check if m_Count is zero - all these are equivalent. If there is
an item, it’s returned as a LIST_ENTRY pointer.

Back to the Read dispatch routine - we can now loop around, getting an item out, copying its data to the
user-mode buffer, until the list is empty or the buffer is full:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 280

else {

while (true) {

auto entry = g_State.RemoveItem();

if (entry == nullptr)

break;

//

// get pointer to the actual data item

//

auto info = CONTAINING_RECORD(entry, FullItem<ItemHeader>, Entry);

auto size = info->Data.Size;

if (len < size) {

//

// user's buffer too small, insert item back

//

g_State.AddHeadItem(entry);

break;

}

memcpy(buffer, &info->Data, size);

len -= size;

buffer += size;

bytes += size;

ExFreePool(info);

}

}

return CompleteRequest(Irp, status, bytes);

Globals::RemoveItem is called to retrieve the head item (if any). Then we have to check if the remaining
bytes in the user’s buffer are enough to contain the data of this item. If not, we have to push the item back
to the head of the queue, accomplished with another method in the Globals class:

void Globals::AddHeadItem(LIST_ENTRY* entry) {

Locker locker(m_Lock);

InsertHeadList(&m_ItemsHead, entry);

m_Count++;

}

If there is enough room in the buffer, a simple memcpy is used to copy the actual data (everything except
the LIST_ENTRY to the user’s buffer). Finally, the variables are adjusted based on the size of this item and
the loop repeats.

Once out of the loop, the only thing remaining is to complete the request with whatever status and
information (bytes) have been accumulated thus far.

We need to take a look at the unload routine as well. If there are items in the linked list, they must be freed
explicitly; otherwise, we have a leak on our hands:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 281

void SysMonUnload(PDRIVER_OBJECT DriverObject) {

PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

LIST_ENTRY* entry;

while ((entry = g_State.RemoveItem()) != nullptr)

ExFreePool(CONTAINING_RECORD(entry, FullItem<ItemHeader>, Entry));

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");

IoDeleteSymbolicLink(&symLink);

IoDeleteDevice(DriverObject->DeviceObject);

}

The linked list items are freed by repeatedly removing items from the list and calling ExFreePool on each
item.

The User Mode Client

Once we have all this in place, we can write a user mode client that polls data using ReadFile and displays
the results.

The main function calls ReadFile in a loop, sleeping a bit so that the thread is not always consuming CPU.
Once some data arrives, it’s sent for display purposes:

#include <Windows.h>

#include <stdio.h>

#include <memory>

#include <string>

#include "..\SysMon\SysMonPublic.h"

int main() {

auto hFile = CreateFile(L"\\\\.\\SysMon", GENERIC_READ, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hFile == INVALID_HANDLE_VALUE)

return Error("Failed to open file");

int size = 1 << 16; // 64 KB

auto buffer = std::make_unique<BYTE[]>(size);

while (true) {

DWORD bytes = 0;

// error handling omitted

ReadFile(hFile, buffer.get(), size, &bytes, nullptr);

if (bytes)

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 282

DisplayInfo(buffer.get(), bytes);

// wait a bit before polling again

Sleep(400);

}

// never actually reached

CloseHandle(hFile);

return 0;

}

The DisplayInfo function must make sense of the buffer it’s given. Since all events start with a common
header, the function distinguishes the various events based on the ItemType. After the event has been
dealt with, the Size field in the header indicates where the next event starts:

void DisplayInfo(BYTE* buffer, DWORD size) {

while (size > 0) {

auto header = (ItemHeader*)buffer;

switch (header->Type) {

case ItemType::ProcessExit:

{

DisplayTime(header->Time);

auto info = (ProcessExitInfo*)buffer;

printf("Process %u Exited (Code: %u)\n",

info->ProcessId, info->ExitCode);

break;

}

case ItemType::ProcessCreate:

{

DisplayTime(header->Time);

auto info = (ProcessCreateInfo*)buffer;

std::wstring commandline(info->CommandLine,

info->CommandLineLength);

printf("Process %u Created. Command line: %ws\n",

info->ProcessId, commandline.c_str());

break;

}

}

buffer += header->Size;

size -= header->Size;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 283

}

To extract the command line properly, the code uses the C++ wstring class constructor that can build a
string based on a pointer and the string length. The DisplayTime helper function formats the time in a
human-readable way:

void DisplayTime(const LARGE_INTEGER& time) {

//

// LARGE_INTEGER and FILETIME have the same size

// representing the same format in our case

//

FILETIME local;

//

// convert to local time first (KeQuerySystemTime(Procise) returns UTC)

//

FileTimeToLocalFileTime((FILETIME*)&time, &local);

SYSTEMTIME st;

FileTimeToSystemTime(&local, &st);

printf("%02d:%02d:%02d.%03d: ",

st.wHour, st.wMinute, st.wSecond, st.wMilliseconds);

}

SYSTEMTIME is a convenient structure to work with, as it contains all ingredients of a date and time. In the
above code, only the time is displayed, but the date components are present as well.

That’s all we need to begin testing the driver and the client.
The driver can be installed and started as done in earlier chapters, similar to the following:

sc create sysmon type= kernel binPath= C:\Test\SysMon.sys

sc start sysmon

Here is some sample output when running SysMonClient.exe:

16:18:51.961: Process 13124 Created. Command line: "C:\Program Files (x86)\Micr\

osoft\Edge\Application\97.0.1072.62\identity_helper.exe" --type=utility --utili\

ty-sub-type=winrt_app_id.mojom.WinrtAppIdService --field-trial-handle=2060,1091\

8786588500781911,4196358801973005731,131072 --lang=en-US --service-sandbox-type\

=none --mojo-platform-channel-handle=5404 /prefetch:8

16:18:51.967: Process 13124 Exited (Code: 3221226029)

16:18:51.969: Process 6216 Created. Command line: "C:\Program Files (x86)\Micro\

soft\Edge\Application\97.0.1072.62\identity_helper.exe" --type=utility --utilit\

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 284

y-sub-type=winrt_app_id.mojom.WinrtAppIdService --field-trial-handle=2060,10918\

786588500781911,4196358801973005731,131072 --lang=en-US --service-sandbox-type=\

none --mojo-platform-channel-handle=5404 /prefetch:8

16:18:53.836: Thread 12456 Created in process 10720

16:18:58.159: Process 10404 Exited (Code: 1)

16:19:02.033: Process 6216 Exited (Code: 0)

16:19:28.163: Process 9360 Exited (Code: 0)

Thread Notifications

The kernel provides thread creation and destruction callbacks, similarly to process callbacks. The API to
use for registration is PsSetCreateThreadNotifyRoutine and for unregistering there is another API,
PsRemoveCreateThreadNotifyRoutine:

NTSTATUS PsSetCreateThreadNotifyRoutine(

In PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine);

NTSTATUS PsRemoveCreateThreadNotifyRoutine (

In PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine);

The arguments provided to the callback routine are the process ID, thread ID and whether the thread is
being created or destroyed:

typedef void (*PCREATE_THREAD_NOTIFY_ROUTINE)(

In HANDLE ProcessId,

In HANDLE ThreadId,

In BOOLEAN Create);

If a thread is created, the callback is executed by the creator thread; if the thread exits, the callback executes
on that thread.

We’ll extend the existing SysMon driver to receive thread notifications as well as process notifications.
First, we’ll add enum values for thread events and a structure representing the information, all in the
SysMonCommon.h header file:

enum class ItemType : short {

None,

ProcessCreate,

ProcessExit,

ThreadCreate,

ThreadExit

};

struct ThreadCreateInfo : ItemHeader {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 285

ULONG ThreadId;

ULONG ProcessId;

};

struct ThreadExitInfo : ThreadCreateInfo {

ULONG ExitCode;

};

It’s convenient to have ThreadExitInfo inherit from ThreadCreateInfo, as they share the thread and
process IDs. It’s certainly not mandatory, but it makes the thread notification callback a bit simpler to
write.

Now we can add the proper registration to DriverEntry, right after registering for process notifications:

status = PsSetCreateThreadNotifyRoutine(OnThreadNotify);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to set thread callbacks (0x%08X)\n",

status));

break;

}

Conversley, a call to PsRemoveCreateThreadNotifyRoutine is needed in the Unload routine:

// in SysMonUnload

PsRemoveCreateThreadNotifyRoutine(OnThreadNotify);

The callback routine itself is simpler than the process notification callback, since the event structures have
fixed sizes. Here is the thread callback routine in its entirety:

void OnThreadNotify(HANDLE ProcessId, HANDLE ThreadId, BOOLEAN Create) {

//

// handle create and exit with the same code block, tweaking as needed

//

auto size = Create ? sizeof(FullItem<ThreadCreateInfo>)

: sizeof(FullItem<ThreadExitInfo>);

auto info = (FullItem<ThreadExitInfo>*)ExAllocatePoolWithTag(

PagedPool, size, DRIVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "Failed to allocate memory\n"));

return;

}

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 286

item.Size = Create ? sizeof(ThreadCreateInfo) : sizeof(ThreadExitInfo);

item.Type = Create ? ItemType::ThreadCreate : ItemType::ThreadExit;

item.ProcessId = HandleToULong(ProcessId);

item.ThreadId = HandleToULong(ThreadId);

if (!Create) {

PETHREAD thread;

if (NT_SUCCESS(PsLookupThreadByThreadId(ThreadId, &thread))) {

item.ExitCode = PsGetThreadExitStatus(thread);

ObDereferenceObject(thread);

}

}

g_State.AddItem(&info->Entry);

}

Most of this code should look pretty familiar. The slightly complex part if retrieving the thread exit code.
PsGetThreadExitStatus can be used for that, but that API requires a thread object pointer rather than an
ID. PsLookupThreadByThreadId is used to obtain the thread object that is passed to PsGetThreadExitStatus.
It’s important to remember to call ObDereferenceObject on the thread object or else it will linger in
memory until the next system restart.

To complete the implementation, we’ll add code to the client that knows how to display thread creation
and destruction (in the switch block inside DisplayInfo):

case ItemType::ThreadCreate:

{

DisplayTime(header->Time);

auto info = (ThreadCreateInfo*)buffer;

printf("Thread %u Created in process %u\n",

info->ThreadId, info->ProcessId);

break;

}

case ItemType::ThreadExit:

{

DisplayTime(header->Time);

auto info = (ThreadExitInfo*)buffer;

printf("Thread %u Exited from process %u (Code: %u)\n",

info->ThreadId, info->ProcessId, info->ExitCode);

break;

}

Here is some sample output given the updated driver and client:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 287

16:19:41.500: Thread 10512 Created in process 9304

16:19:41.500: Thread 10512 Exited from process 9304 (Code: 0)

16:19:41.500: Thread 4424 Exited from process 9304 (Code: 0)

16:19:41.501: Thread 10180 Exited from process 9304 (Code: 0)

16:19:41.777: Process 14324 Created. Command line: "C:\WINDOWS\system32\defrag.\

exe" -p bf8 -s 00000000000003BC -b -OnlyPreferred C:

16:19:41.777: Thread 8120 Created in process 14324

16:19:41.780: Process 11572 Created. Command line: \??\C:\WINDOWS\system32\conh\

ost.exe 0xffffffff -ForceV1

16:19:41.780: Thread 7952 Created in process 11572

16:19:41.784: Thread 8748 Created in process 11572

16:19:41.784: Thread 6408 Created in process 11572

Add client code that displays the process image name for thread create and exit.

Windows 10 adds another registration function that provides additional flexibility.

typedef enum _PSCREATETHREADNOTIFYTYPE {

PsCreateThreadNotifyNonSystem = 0,

PsCreateThreadNotifySubsystems = 1

} PSCREATETHREADNOTIFYTYPE;

NTSTATUS PsSetCreateThreadNotifyRoutineEx(

In PSCREATETHREADNOTIFYTYPE NotifyType,

In PVOID NotifyInformation); // PCREATE_THREAD_NOTIFY_ROUTINE

Using PsCreateThreadNotifyNonSystem indicates the callback for new threads should execute on the
newly created thread, rather than the creator.

Image Load Notifications

The last callback mechanism we’ll look at in this chapter is image load notifications. Whenever a PE image
(EXE, DLL, driver) file loads, the driver can receive a notification.

The PsSetLoadImageNotifyRoutine API registers for these notifications, and
PsRemoveImageNotifyRoutine is used for unregistering:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 288

NTSTATUS PsSetLoadImageNotifyRoutine(

In PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine);

NTSTATUS PsRemoveLoadImageNotifyRoutine(

In PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine);

The callback function has the following prototype:

typedef void (*PLOAD_IMAGE_NOTIFY_ROUTINE)(

_In_opt_ PUNICODE_STRING FullImageName,

In HANDLE ProcessId, // pid into which image is being mapped

In PIMAGE_INFO ImageInfo);

Curiously enough, there is no callback mechanism for image unloads.

The FullImageName argument is somewhat tricky. As indicated by the SAL annotation, it’s optional and
can be NULL. Even if it’s not NULL, it doesn’t always produce the correct image file name before Windows
10. The reasons for that are rooted deep in the kernel, it’s I/O system and the file system cache. In most
cases, this works fine, and the format of the path is the internal NT format, starting with something like
“\Device\HadrdiskVolumex\…” rather than “c:\…”. Translation can be done in a few ways, we’ll see one way
when we look at the client code.

The ProcessId argument is the process ID into which the image is loaded. For drivers (kernel modules),
this value is zero.

The ImageInfo argument contains additional information on the image, declared as follows:

#define IMAGE_ADDRESSING_MODE_32BIT 3

typedef struct _IMAGE_INFO {

union {

ULONG Properties;

struct {

ULONG ImageAddressingMode : 8; // Code addressing mode

ULONG SystemModeImage : 1; // System mode image

ULONG ImageMappedToAllPids : 1; // Image mapped into all processes

ULONG ExtendedInfoPresent : 1; // IMAGE_INFO_EX available

ULONG MachineTypeMismatch : 1; // Architecture type mismatch

ULONG resourcesignatureLevel : 4; // Signature level

ULONG resourcesignatureType : 3; // Signature type

ULONG ImagePartialMap : 1; // Nonzero if entire image is not \

mapped

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 289

ULONG Reserved : 12;

};

};

PVOID ImageBase;

ULONG resourceselector;

SIZE_T resourcesize;

ULONG resourcesectionNumber;

} IMAGE_INFO, *PIMAGE_INFO;

Here is quick rundown of the important fields in this structure:

• SystemModeImage - this flag is set for a kernel image, and unset for a user mode image.
• resourcesignatureLevel - signing level for Protected Processes Light (PPL) (Windows 8.1 and later).
See SE_SIGNING_LEVEL_ constants in the WDK.

• resourcesignatureType - signature type for PPL (Windows 8.1 and later). See the SE_IMAGE_-
SIGNATURE_TYPE enumeration in the WDK.

• ImageBase - the virtual address into which the image is loaded.
• ImageSize - the size of the image.
• ExtendedInfoPresent - if this flag is set, then IMAGE_INFO is part of a larger structure, IMAGE_INFO_-
EX, shown here:

typedef struct _IMAGE_INFO_EX {

SIZE_T Size;

IMAGE_INFO ImageInfo;

struct _FILE_OBJECT *FileObject;

} IMAGE_INFO_EX, *PIMAGE_INFO_EX;

To access this larger structure, a driver can use the CONTAINING_RECORD macro like so:

if (ImageInfo->ExtendedInfoPresent) {

auto exinfo = CONTAINING_RECORD(ImageInfo, IMAGE_INFO_EX, ImageInfo);

// access FileObject

}

The extended structure adds just one meaningful member - the file object used to open the image. This
may be useful for retrieving the file name in pre-WIndows 10 machines, as we’ll soon see.

As with the process and thread notifications, we’ll add the needed code to register in DriverEntry and
the code to unregister in the Unload routine. Here is the full DriverEntry function (with KdPrint calls
removed for brevity):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 290

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

auto status = STATUS_SUCCESS;

PDEVICE_OBJECT DeviceObject = nullptr;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");

bool symLinkCreated = false;

bool processCallbacks = false, threadCallbacks = false;

do {

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\sysmon");

status = IoCreateDevice(DriverObject, 0, &devName,

FILE_DEVICE_UNKNOWN, 0, TRUE, &DeviceObject);

if (!NT_SUCCESS(status)) {

break;

}

DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status)) {

break;

}

symLinkCreated = true;

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);

if (!NT_SUCCESS(status)) {

break;

}

processCallbacks = true;

status = PsSetCreateThreadNotifyRoutine(OnThreadNotify);

if (!NT_SUCCESS(status)) {

break;

}

threadCallbacks = true;

status = PsSetLoadImageNotifyRoutine(OnImageLoadNotify);

if (!NT_SUCCESS(status)) {

break;

}

} while (false);

if (!NT_SUCCESS(status)) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 291

if (threadCallbacks)

PsRemoveCreateThreadNotifyRoutine(OnThreadNotify);

if (processCallbacks)

PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

if (symLinkCreated)

IoDeleteSymbolicLink(&symLink);

if (DeviceObject)

IoDeleteDevice(DeviceObject);

return status;

}

g_State.Init(10000);

DriverObject->DriverUnload = SysMonUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = SysMonCreateClose;

DriverObject->MajorFunction[IRP_MJ_READ] = SysMonRead;

return status;

}

We’ll add an event type to the ItemType enum:

enum class ItemType : short {

None,

ProcessCreate,

ProcessExit,

ThreadCreate,

ThreadExit,

ImageLoad

};

As before, we need a structure to contain the information we can get from image load:

const int MaxImageFileSize = 300;

struct ImageLoadInfo : ItemHeader {

ULONG ProcessId;

ULONG ImageSize;

ULONG64 LoadAddress;

WCHAR ImageFileName[MaxImageFileSize + 1];

};

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 292

For variety, ImageLoadInfo uses a fixed size array to store the path to the image file. The interested reader
should change that to use a scheme similar to process create notifications.

The image load notification starts by not storing information on kernel images:

void OnImageLoadNotify(PUNICODE_STRING FullImageName,

HANDLE ProcessId, PIMAGE_INFO ImageInfo) {

if (ProcessId == nullptr) {

// system image, ignore

return;

}

This is not necessary, of course. You can remove the above check so that kernel images are reported as
well. Next, we allocate the data structure and fill in the usual information:

auto size = sizeof(FullItem<ImageLoadInfo>);

auto info = (FullItem<ImageLoadInfo>*)ExAllocatePoolWithTag(PagedPool, size, DR\

IVER_TAG);

if (info == nullptr) {

KdPrint((DRIVER_PREFIX "Failed to allocate memory\n"));

return;

}

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Size = sizeof(item);

item.Type = ItemType::ImageLoad;

item.ProcessId = HandleToULong(ProcessId);

item.ImageSize = (ULONG)ImageInfo->ImageSize;

item.LoadAddress = (ULONG64)ImageInfo->ImageBase;

The interesting part is the image path. The simplest option is to examine FullImageName, and if non-
NULL, just grab its contents. But since this information might be missing or not 100% reliable, we can try
something else first, and fall back on FullImageName if all else fails.

The secret is to use FltGetFileNameInformationUnsafe - a variant on FltGetFileNameInformation
that is used with File System Mini-filters, as we’ll see in chapter 12. The “Unsafe” version can be called
in non-file-system contexts as is our case. A full discussion on FltGetFileNameInformation is saved for
chapter 12. For now, let’s just use if the file object is available:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 293

item.ImageFileName[0] = 0; // assume no file information

if (ImageInfo->ExtendedInfoPresent) {

auto exinfo = CONTAINING_RECORD(ImageInfo, IMAGE_INFO_EX, ImageInfo);

PFLT_FILE_NAME_INFORMATION nameInfo;

if (NT_SUCCESS(FltGetFileNameInformationUnsafe(exinfo->FileObject,

nullptr, FLT_FILE_NAME_NORMALIZED | FLT_FILE_NAME_QUERY_DEFAULT,

&nameInfo))) {

// copy the file path

wcscpy_s(item.ImageFileName, nameInfo->Name.Buffer);

FltReleaseFileNameInformation(nameInfo);

}

}

FltGetFileNameInformationUnsafe requires the file object that can be obtained from the extended
IMAGE_INFO_EX structure. wcscpy_s ensures we don’t copy more characters than are available in the
buffer. FltReleaseFileNameInformation must be called to free the PFLT_FILE_NAME_INFORMATION
object allocated by FltGetFileNameInformationUnsafe.

To gain access to these functions, add #include for <FltKernel.h> and add FlgMgr.lib into the Linker Input
/ Additional Dependencies line.

Finally, if this method does not produce a result, we fall back to using the provided image path:

if (item.ImageFileName[0] == 0 && FullImageName) {

wcscpy_s(item.ImageFileName, FullImageName->Buffer);

}

g_State.AddItem(&info->Entry);

Here is the full image load notification code for easier reference (KdPrint removed):

void OnImageLoadNotify(PUNICODE_STRING FullImageName, HANDLE ProcessId, PIMAGE_\

INFO ImageInfo) {

if (ProcessId == nullptr) {

// system image, ignore

return;

}

auto size = sizeof(FullItem<ImageLoadInfo>);

auto info = (FullItem<ImageLoadInfo>*)ExAllocatePoolWithTag(

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 294

PagedPool, size, DRIVER_TAG);

if (info == nullptr)

return;

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Size = sizeof(item);

item.Type = ItemType::ImageLoad;

item.ProcessId = HandleToULong(ProcessId);

item.ImageSize = (ULONG)ImageInfo->ImageSize;

item.LoadAddress = (ULONG64)ImageInfo->ImageBase;

item.ImageFileName[0] = 0;

if (ImageInfo->ExtendedInfoPresent) {

auto exinfo = CONTAINING_RECORD(ImageInfo, IMAGE_INFO_EX, ImageInfo);

PFLT_FILE_NAME_INFORMATION nameInfo;

if (NT_SUCCESS(FltGetFileNameInformationUnsafe(

exinfo->FileObject, nullptr,

FLT_FILE_NAME_NORMALIZED | FLT_FILE_NAME_QUERY_DEFAULT,

&nameInfo))) {

wcscpy_s(item.ImageFileName, nameInfo->Name.Buffer);

FltReleaseFileNameInformation(nameInfo);

}

}

if (item.ImageFileName[0] == 0 && FullImageName) {

wcscpy_s(item.ImageFileName, FullImageName->Buffer);

}

g_State.AddItem(&info->Entry);

}

Final Client Code

The client code must be extended for image loads. It seems easy enough except for one snag: the resulting
image path retrieved in the image load notification is in NT Device form, instead of the more common,
“DOS based” form with drive letters, which in fact are symbolic links. We can see these mappings in tools
such asWinObj from Sysinternals (figure 9-3).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 295

Figure 9-3: Symbolic links inWinObj

Notice the device name targets for C: and D: in figure 9-3. A file like c:\temp\mydll.dll will be reported as
\Device\DeviceHarddiskVolume3\temp\mydll.dll. It would be nice if the display would show the common
mappings instead of the NT device name.

One way of getting these mappings is by calling QueryDosDevice, which retrieves the target of a symbolic
link stored in the “??” Object Manager directory. We are already familiar with these symbolic links, as they
are valid strings to the CreateFile API.

Based on QueryDosDevice, we can loop over all existing drive letters and store the targets. Then, we can
lookup every device name and find its drive letter (symbolic link). Here is a function to do that. If we can’t
find a match, we’ll just return the original string:

#include <unordered_map>

std::wstring GetDosNameFromNTName(PCWSTR path) {

if (path[0] != L'\\')

return path;

static std::unordered_map<std::wstring, std::wstring> map;

if (map.empty()) {

auto drives = GetLogicalDrives();

int c = 0;

WCHAR root[] = L"X:";

WCHAR target[128];

while (drives) {

if (drives & 1) {

root[0] = 'A' + c;

if (QueryDosDevice(root, target, _countof(target))) {

map.insert({ target, root });

}

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 296

drives >>= 1;

c++;

}

}

auto pos = wcschr(path + 1, L'\\');

if (pos == nullptr)

return path;

pos = wcschr(pos + 1, L'\\');

if (pos == nullptr)

return path;

std::wstring ntname(path, pos - path);

if (auto it = map.find(ntname); it != map.end())

return it->second + std::wstring(pos);

return path;

}

I will let the interested reader figure out how this code works. In any case, since user-mode is not the focus
of this book, you can just use the function as is, as we’ll do in our client.

Here is the part in DisplayInfo that handles image load notifications (within the switch):

case ItemType::ImageLoad:

{

DisplayTime(header->Time);

auto info = (ImageLoadInfo*)buffer;

printf("Image loaded into process %u at address 0x%llX (%ws)\n",

info->ProcessId, info->LoadAddress,

GetDosNameFromNTName(info->ImageFileName).c_str());

break;

}

Here is some example output when running the full driver and client:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 297

18:59:37.660: Image loaded into process 12672 at address 0x7FFD531C0000 (C:\Win\

dows\System32\msvcp110_win.dll)

18:59:37.661: Image loaded into process 12672 at address 0x7FFD5BF30000 (C:\Win\

dows\System32\advapi32.dll)

18:59:37.676: Thread 11416 Created in process 5820

18:59:37.676: Thread 12496 Created in process 4824

18:59:37.731: Thread 6636 Created in process 3852

18:59:37.731: Image loaded into process 12672 at address 0x7FFD59F70000 (C:\Win\

dows\System32\ntmarta.dll)

18:59:37.735: Image loaded into process 12672 at address 0x7FFD51340000 (C:\Win\

dows\System32\policymanager.dll)

18:59:37.735: Image loaded into process 12672 at address 0x7FFD531C0000 (C:\Win\

dows\System32\msvcp110_win.dll)

18:59:37.737: Image loaded into process 12672 at address 0x7FFD51340000 (C:\Win\

dows\System32\policymanager.dll)

18:59:37.737: Image loaded into process 12672 at address 0x7FFD531C0000 (C:\Win\

dows\System32\msvcp110_win.dll)

18:59:37.756: Thread 6344 Created in process 704

Add the process name in image load notifications.

Create a driver that monitors process creation and allows a client application to configure
executable paths that should not be allowed to execute.

Remote Thread Detection

One interesting example of using process and thread notifications is to detect remote threads. A remote
thread is one that is created (injected) to a process different than its creator. This fairly well-known
technique can be used (for example) to force the new thread to load a DLL, essentially injecting that
DLL into another process.

This scenario is not necessarily malicious, but it could be. The most common example where this happens
is when a debugger attaches to a target and wants to break into the target. This is done by creating a
thread in the target process (by the debugger process) and pointing the thread function to an API such as
DebugBreak that forces a breakpoint, allowing the debugger to gain control.

Anti-malware systems know how to detect these scenarios, as these may be malicious. Let’s build a driver
that can make that kind of detection. At first, it seems to be very simple: when a thread is created, compare
its creator’s process ID with the target process where the thread is created, and if they are different - you
have a remote thread on your hands.

There is a small dent in the above description. The first thread in any process is “remote” by definition,
because it’s created by some other process (typically the one calling CreateProcess), so this “natural”
occurrence should not be considered a remote thread creation.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 298

If you feel up to it, code this driver on your own!

The core of the driver are process and thread notification callbacks. The most important is the thread
creation callback, where the driver’s job is to determine whether a created thread is a remote one or not.
We must keep an eye for new processes as well, because the first thread in a new process is technically
remote, but we need to ignore it.

The data maintained by the driver and later provided to the client contains the following (DetectorPublic.h):

struct RemoteThread {

LARGE_INTEGER Time;

ULONG CreatorProcessId;

ULONG CreatorThreadId;

ULONG ProcessId;

ULONG ThreadId;

};

Here is the data we’ll store as part of the driver (in KDetector.h):

struct RemoteThreadItem {

LIST_ENTRY Link;

RemoteThread Remote;

};

const ULONG MaxProcesses = 32;

ULONG NewProcesses[MaxProcesses];

ULONG NewProcessesCount;

ExecutiveResource ProcessesLock;

LIST_ENTRY RemoteThreadsHead;

FastMutex RemoteThreadsLock;

LookasideList<RemoteThreadItem> Lookaside;

There are a few class wrappers for kernel APIs we haven’t seen yet. FastMutex is the same we used in
the SysMon driver. ExecutiveResource is a wrapper for an ERESOURCE structure and APIs we looked at
in chapter 6. Here is its declaration and definition:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 299

// ExecutiveResource.h

struct ExecutiveResource {

void Init();

void Delete();

void Lock();

void Unlock();

void LockShared();

void UnlockShared();

private:

ERESOURCE m_res;

bool m_CritRegion;

};

// ExecutiveResource.cpp

void ExecutiveResource::Init() {

ExInitializeResourceLite(&m_res);

}

void ExecutiveResource::Delete() {

ExDeleteResourceLite(&m_res);

}

void ExecutiveResource::Lock() {

m_CritRegion = KeAreApcsDisabled();

if(m_CritRegion)

ExAcquireResourceExclusiveLite(&m_res, TRUE);

else

ExEnterCriticalRegionAndAcquireResourceExclusive(&m_res);

}

void ExecutiveResource::Unlock() {

if (m_CritRegion)

ExReleaseResourceLite(&m_res);

else

ExReleaseResourceAndLeaveCriticalRegion(&m_res);

}

void ExecutiveResource::LockShared() {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 300

m_CritRegion = KeAreApcsDisabled();

if (m_CritRegion)

ExAcquireResourceSharedLite(&m_res, TRUE);

else

ExEnterCriticalRegionAndAcquireResourceShared(&m_res);

}

void ExecutiveResource::UnlockShared() {

Unlock();

}

A few things are worth noting:

• Acquiring an Executive Resource must be done in a critical region (when normal kernel APCs are
disabled). The call to KeAreApcsDisabled returns true if normal kernel APCs are disabled. In that
case a simple acquisition will do; otherwise, a critical region must be entered first, so the “shortcuts”
to enter a critical region and acquire the Executive Resource are used.

A similar API, KeAreAllApcsDisabled returns true if all APCs are disabled (essentially
whether the thread is in a guarded region).

• An Executive Resource is used to protect the NewProcesses array from concurrent write access.
The idea is that more reads than writes are expected for this data. In any case, I wanted to show a
possible wrapper for an Executive Resource.

• The class presents an interface that can work with the Locker<TLock> type we have been using
for exclusive access. For shared access, the LockShared and UnlockShared methods are provided.
To use them conveniently, a companion class to Locker<> can be written to acquire the lock in a
shared manner. Here is its definition (in Locker.h as well):

template<typename TLock>

struct SharedLocker {

SharedLocker(TLock& lock) : m_lock(lock) {

lock.LockShared();

}

~SharedLocker() {

m_lock.UnlockShared();

}

private:

TLock& m_lock;

};

LookasideList<T> is a wrapper for lookaside lists we met in chapter 8. It’s using the new API, as it’s
easier for selecting the pool type required. Here is its definition (in LookasideList.h):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 301

template<typename T>

struct LookasideList {

NTSTATUS Init(POOL_TYPE pool, ULONG tag) {

return ExInitializeLookasideListEx(&m_lookaside, nullptr, nullptr,

pool, 0, sizeof(T), tag, 0);

}

void Delete() {

ExDeleteLookasideListEx(&m_lookaside);

}

T* Alloc() {

return (T*)ExAllocateFromLookasideListEx(&m_lookaside);

}

void Free(T* p) {

ExFreeToLookasideListEx(&m_lookaside, p);

}

private:

LOOKASIDE_LIST_EX m_lookaside;

};

Going back to the data members for this driver. The purpose of the NewProcesses array is to keep track of
new processes before their first thread is created. Once the first thread is created, and identified as such, the
array will drop the process in question, because from that point on, any new thread created in that process
from another process is a remote thread for sure. We’ll see all that in the callbacks implementations.

The driver uses a simple array rather than a linked list, because I don’t expect a lot of processes with no
threads to exist for more than a tiny fraction, so a fixed sized array should be good enough. However, you
can change that to a linked list to make this bulletproof.

When a new process is created, it should be added to the NewProcesses array since the process has zero
threads at that moment:

void OnProcessNotify(PEPROCESS Process, HANDLE ProcessId,

PPS_CREATE_NOTIFY_INFO CreateInfo) {

UNREFERENCED_PARAMETER(Process);

if (CreateInfo) {

if (!AddNewProcess(ProcessId)) {

KdPrint((DRIVER_PREFIX "New process created, no room to store\n"));

}

else {

KdPrint((DRIVER_PREFIX "New process added: %u\n", HandleToULong(Pro\

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 302

cessId)));

}

}

}

AddProcess locates an empty “slot” in the array and puts the process ID in it:

bool AddNewProcess(HANDLE pid) {

Locker locker(ProcessesLock);

if (NewProcessesCount == MaxProcesses)

return false;

for(int i = 0; i < MaxProcesses; i++)

if (NewProcesses[i] == 0) {

NewProcesses[i] = HandleToUlong(pid);

break;

}

NewProcessesCount++;

return true;

}

Now comes the interesting part: the thread create/exit callback.

1. Add process names to the data maintained by the driver for each remote thread. A
remote thread is when the creator (the caller) is different than the process in which the
new thread is created. We also have to remove some false positives:

void OnThreadNotify(HANDLE ProcessId, HANDLE ThreadId, BOOLEAN Create) {

if (Create) {

bool remote = PsGetCurrentProcessId() != ProcessId

&& PsInitialSystemProcess != PsGetCurrentProcess()

&& PsGetProcessId(PsInitialSystemProcess) != ProcessId;

The second and third checks make sure the source process or target process is not the System process. The
reasons for the System process to exist in these cases are interesting to investigate, but are out of scope for
this book - we’ll just remove these false positives. The question is how to identify the System process. All
versions of Windows from XP have the same PID for the System process: 4. We could use that number
because it’s unlikely to change in the future, but there is another way, which is foolproof and also allows
me to introduce something new.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 303

The kernel exports a global variable, PsInitialSystemProcess, which always points to the System pro-
cess’ EPROCESS structure. This pointer can be used just like any other opaque process pointer.

If the thread is indeed remote, we must check if it’s the first thread in the process, and if so, discard this
as a remote thread:

if (remote) {

//

// really remote if it's not a new process

//

bool found = FindProcess(ProcessId);

FindProcess searches for a process ID in the NewProcesses array:

bool FindProcess(HANDLE pid) {

auto id = HandleToUlong(pid);

SharedLocker locker(ProcessesLock);

for (int i = 0; i < MaxProcesses; i++)

if (NewProcesses[i] == id)

return true;

return false;

}

If the process is found, then it’s the first thread in the process and we should remove the process from the
new processes array so that subsequent remote threads (if any) can be identified as such:

if (found) {

//

// first thread in process, remove process from new processes array

//

RemoveProcess(ProcessId);

}

RemoveProcess searches for the PID and removes it from the array by zeroing it out:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 304

bool RemoveProcess(HANDLE pid) {

auto id = HandleToUlong(pid);

Locker locker(ProcessesLock);

for (int i = 0; i < MaxProcesses; i++)

if (NewProcesses[i] == id) {

NewProcesses[i] = 0;

NewProcessesCount--;

return true;

}

return false;

}

If the process isn’t found, then it’s not new and we have a real remote thread on our hands:

else {

//

// really a remote thread

//

auto item = Lookaside.Alloc();

auto& data = item->Remote;

KeQuerySystemTimePrecise(&data.Time);

data.CreatorProcessId = HandleToULong(PsGetCurrentProcessId());

data.CreatorThreadId = HandleToULong(PsGetCurrentThreadId());

data.ProcessId = HandleToULong(ProcessId);

data.ThreadId = HandleToULong(ThreadId);

KdPrint((DRIVER_PREFIX

"Remote thread detected. (PID: %u, TID: %u) -> (PID: %u, TID: %u)\n",

data.CreatorProcessId, data.CreatorThreadId,

data.ProcessId, data.ThreadId));

Locker locker(RemoteThreadsLock);

// TODO: check the list is not too big

InsertTailList(&RemoteThreadsHead, &item->Link);

}

Getting the data to a user mode client can be done in the same way as we did for the SysMon driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 305

NTSTATUS DetectorRead(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto len = irpSp->Parameters.Read.Length;

auto status = STATUS_SUCCESS;

ULONG bytes = 0;

NT_ASSERT(Irp->MdlAddress);

auto buffer = (PUCHAR)MmGetSystemAddressForMdlSafe(

Irp->MdlAddress, NormalPagePriority);

if (!buffer) {

status = STATUS_INSUFFICIENT_RESOURCES;

}

else {

Locker locker(RemoteThreadsLock);

while (true) {

//

// if the list is empty, there is nothing else to give

//

if (IsListEmpty(&RemoteThreadsHead))

break;

//

// if remaining buffer size is too small, break

//

if (len < sizeof(RemoteThread))

break;

auto entry = RemoveHeadList(&RemoteThreadsHead);

auto info = CONTAINING_RECORD(entry, RemoteThreadItem, Link);

ULONG size = sizeof(RemoteThread);

memcpy(buffer, &info->Remote, size);

len -= size;

buffer += size;

bytes += size;

//

// return data item to the lookaside list

//

Lookaside.Free(info);

}

}

return CompleteRequest(Irp, status, bytes);

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 306

Because there is just one type of “event” and it has a fixed size, the code is simpler than in the SysMon
case.

The full driver code is in the KDetector project in the solution for this chapter.

The Detector Client

The client code is very similar to the SysMon client, but simpler, because all “events” have the same
structure and are even fixed-sized. Here are the main and DisplayData functions:

void DisplayData(const RemoteThread* data, int count) {

for (int i = 0; i < count; i++) {

auto& rt = data[i];

DisplayTime(rt.Time);

printf("Remote Thread from PID: %u TID: %u -> PID: %u TID: %u\n",

rt.CreatorProcessId, rt.CreatorThreadId, rt.ProcessId, rt.ThreadId);

}

}

int main() {

HANDLE hDevice = CreateFile(L"\\\\.\\kdetector", GENERIC_READ, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)

return Error("Error opening device");

RemoteThread rt[20]; // fixed array is good enough

for (;;) {

DWORD bytes;

if (!ReadFile(hDevice, rt, sizeof(rt), &bytes, nullptr))

return Error("Failed to read data");

DisplayData(rt, bytes / sizeof(RemoteThread));

Sleep(1000);

}

CloseHandle(hDevice);

return 0;

}

The DisplayTime is the same one from the SysMonClient project.

We can test the driver by installing it and starting it normally, and launching our client (or we can use
DbgView to see the remote thread outputs). The classic example of a remote thread (as mentioned earlier)
is when a debugger wishes to forcefully break into a target process. Here is one way to do that:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 9: Process and Thread Notifications 307

1. Run some executable, say Notepad.exe.
2. Launch WinDbg.
3. Use WinDbg to attach to the Notepad process. A remote thread notification should appear.

Here are some examples of output when the detector client is running:

13:08:15.280: Remote Thread from PID: 7392 TID: 4788 -> PID: 8336 TID: 9384

13:08:58.660: Remote Thread from PID: 7392 TID: 13092 -> PID: 8336 TID: 13288

13:10:52.313: Remote Thread from PID: 7392 TID: 13092 -> PID: 8336 TID: 12676

13:11:25.207: Remote Thread from PID: 15268 TID: 7564 -> PID: 1844 TID: 6688

13:11:25.209: Remote Thread from PID: 15268 TID: 15152 -> PID: 1844 TID: 7928

You might find some remote thread entries surprising (run Process Explorer for a while, for example)

The full code of the client is in the Detector project.

Display process names in the client.

Summary

In this chapter we looked at some of the callback mechanisms provided by the kernel: process, thread
and image loads. In the next chapter, we’ll continue with more callback mechanisms - opening handles to
certain object types, and Registry notifications.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry
Notifications
The kernel provides more ways to intercept certain operations. First, we’ll examine object notifications,
where obtaining handles to some types of objects can be intercepted. Then, we’ll look at Registry operations
interception.

In this chapter:

• Object Notifications
• The Process Protector Driver
• Registry Notifications
• Extending the SysMon Driver
• Exercises

Object Notifications

The kernel provides a mechanism to notify interested drivers when attempts to open or duplicate a handle
to certain object types. The officially supported object types are process, thread, and for Windows 10 -
desktop as well.

Desktop Objects
A desktop is a kernel object contained in a Window Station, yet another kernel object, which is in itself
part of a Session. A desktop contains windows, menus, and hooks. The hooks referred to here are user-
mode hooks available with the SetWindowsHookEx API.

Normally, when a user logs in, two desktops are created. A desktop named “Winlogon” is created by
Winlogon.exe. This is the desktop that you see when pressing the Secure Attention Sequence key combi-
nation(SAS, normally Ctrl+Alt+Del). The second desktop is named “default” and is the normal desktop
we are familiar with, where normal windows are shown and used. Switching to another desktop is done
with the SwitchDesktop API. For some more details, read this blog post.

https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/

The registration API to call is ObRegisterCallbacks, prototyped like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/
https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/

Chapter 10: Object and Registry Notifications 309

NTSTATUS ObRegisterCallbacks (

In POB_CALLBACK_REGISTRATION CallbackRegistration,

Outptr PVOID *RegistrationHandle);

Prior to registration, an OB_CALLBACK_REGISTRATION structure must be initialized, which provides
the necessary details about what the driver is registering for. The RegistrationHandle is the return
value upon a successful registration, which is just an opaque pointer used for unregistering by calling
ObUnRegisterCallbacks.

Drivers using ObRegisterCallbacks must be linked with the /integritycheck switch.

Here is the definition of OB_CALLBACK_REGISTRATION:

typedef struct _OB_CALLBACK_REGISTRATION {

In USHORT Version;

In USHORT OperationRegistrationCount;

In UNICODE_STRING Altitude;

In PVOID RegistrationContext;

In OB_OPERATION_REGISTRATION *OperationRegistration;

} OB_CALLBACK_REGISTRATION, *POB_CALLBACK_REGISTRATION;

Version is just a constant that must be set to OB_FLT_REGISTRATION_VERSION (currently 0x100). Next, the
number of operations that are being registered is specified byOperationRegistrationCount. This determines
the number of OB_OPERATION_REGISTRATION structures that are pointed to by OperationRegistration.
Each one of these provides information on an object type of interest (process, thread or desktop).

TheAltitude argument is interesting. It specifies a number (in string form) that affects the order of callbacks
invocation for this driver. This is necessary because other drivers may have their own callbacks and the
question of which driver is invoked first is answered by the altitude - the higher the altitude, the earlier
in the call chain the driver is invoked.

What value should the altitude be? It shouldn’t matter in most cases, as there is no obvious to know what
values other drivers are using. The altitude provided must not collide with altitudes specified by previously
registered drivers. The altitude does not have to be an integer number. In fact, it’s an infinite precision
decimal number, and this is why it’s specified as a string. To avoid collision, the altitude should be set to
something with random numbers after a decimal point, such as “12345.1762389”. The chances of collision
in this case are slim. The driver can even truly generate random digits to avoid collisions. If the registration
fails with a status of STATUS_FLT_INSTANCE_ALTITUDE_COLLISION, this means altitude collision, so the
careful driver can adjust its altitude and try again.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 310

The concept of Altitude is also used for registry filtering (see “Registry Notifications” later in this chapter)
and file system mini-filters (see chapter 12).

Finally, RegistrationContext is a driver defined value that is passed as-is to the callback routine(s).

The OB_OPERATION_REGISTRATION structure(s) is where the driver sets up its callbacks, indicates which
object types and operations are of interest. It’s defined like so:

typedef struct _OB_OPERATION_REGISTRATION {

In POBJECT_TYPE *ObjectType;

In OB_OPERATION Operations;

In POB_PRE_OPERATION_CALLBACK PreOperation;

In POB_POST_OPERATION_CALLBACK PostOperation;

} OB_OPERATION_REGISTRATION, *POB_OPERATION_REGISTRATION;

ObjectType is a pointer to the object type for this instance registration - process, thread or desktop. These
pointers are exported as global kernel variables: PsProcessType, PsThreadType, and ExDesktopObjectType,
respectively.

TheOperations fieldmust specify one or two flags (OB_OPERATION), selecting create/open (OB_OPERATION_-
HANDLE_CREATE) and/or duplicate (OB_OPERATION_HANDLE_DUPLICATE).

OB_OPERATION_HANDLE_CREATE refers to calls to usermode functions such as CreateProcess, OpenProcess,
CreateThread, OpenThread, CreateDesktop, OpenDesktop and similar functions for these object types.
OB_OPERATION_HANDLE_DUPLICATE refers to handle duplication for these objects (such as using the
DuplicateHandle user-mode API).

The APIs intercepted are not user-mode only; kernel APIs are intercepted as well (the callbacks parameters
do indicate if the handle being created/duplicated is a kernel handle). Kernel APIs such as ZwOpenProcess,
PsCreateSystemThread, and ZwDuplicateObject are examples of affected functions.

Any time one of these calls is made, one or two callbacks can be registered: a pre-operation callback
(PreOperation field) and/or a post-operation callback (PostOperation).

Pre-Operation Callback

The pre-operation callback is invoked before the actual create/open/duplicate operation completes, giving
a chance to the driver to make changes to the operation’s result. The pre-operation callback receives a
OB_PRE_OPERATION_INFORMATION structure, defined as shown here:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 311

typedef struct _OB_PRE_OPERATION_INFORMATION {

In OB_OPERATION Operation;

union {

In ULONG Flags;

struct {

In ULONG KernelHandle:1;

In ULONG Reserved:31;

};

};

In PVOID Object;

In POBJECT_TYPE ObjectType;

Out PVOID CallContext;

In POB_PRE_OPERATION_PARAMETERS Parameters;

} OB_PRE_OPERATION_INFORMATION, *POB_PRE_OPERATION_INFORMATION;

Here is a rundown of the structure’s members:

• Operation - indicates what operation is this (OB_OPERATION_HANDLE_CREATE or OB_OPERATION_-
HANDLE_DUPLICATE).

• KernelHandle (inside Flags) - indicates this is a kernel handle. Kernel handles can only be created
and used by kernel code. This allows the driver to ignore kernel requests if it so desires.

• Object - the pointer to the actual object for which a handle is being created/opened/duplicated. For
processes, this is the EPROCESS address, for thread it’s the PETHREAD address.

• ObjectType - points to the object type: *PsProcessType, *PsThreadType or *ExDesktopObjectType.
• CallContext - a driver-defined value, that is propagated to the post-callback for this instance (if
exists).

• Parameters - a union specifying additional information based on theOperation. This union is defined
like so:

typedef union _OB_PRE_OPERATION_PARAMETERS {

Inout OB_PRE_CREATE_HANDLE_INFORMATION CreateHandleInformation;

Inout OB_PRE_DUPLICATE_HANDLE_INFORMATION DuplicateHandleInformation;

} OB_PRE_OPERATION_PARAMETERS, *POB_PRE_OPERATION_PARAMETERS;

The driver should inspect the appropriate field based on the operation. For Create operations, the driver
receives the following information:

typedef struct _OB_PRE_CREATE_HANDLE_INFORMATION {

Inout ACCESS_MASK DesiredAccess;

In ACCESS_MASK OriginalDesiredAccess;

} OB_PRE_CREATE_HANDLE_INFORMATION, *POB_PRE_CREATE_HANDLE_INFORMATION;

TheOriginalDesiredAccess is the access mask specified by the caller. Consider this user-mode code to open
a handle to an existing process:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 312

HANDLE OpenHandleToProcess(DWORD pid) {

HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,

FALSE, pid);

if(!hProcess) {

// failed to open a handle

}

return hProcess;

}

In this example, the client tries to obtain a handle to a process with the specified access mask, indicating
what are its “intentions” towards that process. The driver’s pre-operation callback receives this value
in the OriginalDesiredAccess field. This value is also copied to DesiredAccess. Normally, the kernel will
determine, based on the client’s security context and the process’ security descriptor whether the client
can be granted the access it desires.

The driver can, based on its own logic, modify DesiredAccess for example by removing some of the access
requested by the client:

OB_PREOP_CALLBACK_STATUS OnPreOpenProcess(PVOID /* RegistrationContext */,

POB_PRE_OPERATION_INFORMATION Info) {

if(/* some logic */) {

Info->Parameters->CreateHandleInformation.DesiredAccess &=

~PROCESS_VM_READ;

}

return OB_PREOP_SUCCESS;

}

The above code snippet removes the PROCESS_VM_READ access mask before letting the operation continue
normally. If it eventually succeeds, the client will get back a valid handle, but only with the PROCESS_-
QUERY_INFORMATION access mask.

You can find the complete list of process, thread and desktop access masks in the MSDN
documentation.

You cannot add new access mask bits that were not requested by the client.

For duplicate operations, the information provided to the driver is the following:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 313

typedef struct _OB_PRE_DUPLICATE_HANDLE_INFORMATION {

Inout ACCESS_MASK DesiredAccess;

In ACCESS_MASK OriginalDesiredAccess;

In PVOID SourceProcess;

In PVOID TargetProcess;

} OB_PRE_DUPLICATE_HANDLE_INFORMATION, *POB_PRE_DUPLICATE_HANDLE_INFORMATION;

The DesiredAccess field can be modified as before. The extra information provided is the source process
(from which a handle is being duplicated) and the target process (the process the new handle will be
duplicated into). This allows the driver to query various properties of these processes before making a
decision on how to modify (if at all) the desired access mask.

Notice that although both structures in the union are different, the first two members are the
same, so they have the same layout in memory. This is useful for handling create and duplicate
operations with the same code.

Post-Operation Callback

Post-operation callbacks are invoked after the operation completes. At this point, the driver cannot make
any modifications, it can only look at the results. The post-operation callback receives the following
structure:

typedef struct _OB_POST_OPERATION_INFORMATION {

In OB_OPERATION Operation;

union {

In ULONG Flags;

struct {

In ULONG KernelHandle:1;

In ULONG Reserved:31;

};

};

In PVOID Object;

In POBJECT_TYPE ObjectType;

In PVOID CallContext;

In NTSTATUS ReturnStatus;

In POB_POST_OPERATION_PARAMETERS Parameters;

} OB_POST_OPERATION_INFORMATION,*POB_POST_OPERATION_INFORMATION;

This looks similar to the pre-operation callback information, except for the following:

• The final status of the operation is returned in ReturnStatus. If successful, it means the client will
get back a valid handle (possibly with a reduced access mask).

• The Parameters union provided has just one piece of information: the access mask granted to the
client (assuming the status is successful).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 314

The Process Protector Driver

The Process Protector driver is an example of using object callbacks. Its purpose is to protect certain
processes from termination by denying the PROCESS_TERMINATE access mask from any client that requests
it.

The driver should keep a list of protected processes. In this driver we’ll use a simple limited array to hold
the process IDs under the driver’s protection. Here is the structure used to hold the driver’s global data
(defined in Protector.h):

#define PROCESS_TERMINATE 1

const int MaxPids = 256;

struct Globals {

ULONG PidsCount; // currently protected process count

ULONG Pids[MaxPids]; // protected PIDs

ExecutiveResource Lock;

PVOID RegHandle;

void Init() {

Lock.Init();

}

void Term() {

Lock.Delete();

}

};

Notice that we must define PROCESS_TERMINATE explicitly, since it’s not defined in the WDK
headers (only PROCESS_ALL_ACCESS is defined). It’s fairly easy to get its definition from user
mode headers or documentation.

The ExecutiveResource type is the same used in chapter 9. It’s important to use an Executive Resource
here and not a (fast) mutex because we anticipate many more “reads” (checks if a process is under the
driver’s termination protection) than “writes” (adding or removing processes), so there is a clear advantage
to an Executive Resource in this case. The main file (Protector.cpp) declares a global variable of type
Globals named g_Data, calls Init in DriverEntry, and calls Term in the Unload routine, as we’ll see
shortly.

Object Notification Registration

The DriverEntry routine must include the registration to object callbacks for process objects. Here is the
start of DriverEntry:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 315

extern "C"

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

g_Data.Init();

Next, we prepare the structures for registration:

OB_OPERATION_REGISTRATION operation = {

PsProcessType, // object type

OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE,

OnPreOpenProcess, nullptr // pre, post

};

OB_CALLBACK_REGISTRATION reg = {

OB_FLT_REGISTRATION_VERSION,

1, // operation count

RTL_CONSTANT_STRING(L"12345.6171"), // altitude

nullptr, // context

&operation // single operation

};

The registration is for process objects only, with a pre-callback provided. This callback should remove the
PROCESS_TERMINATE access mask from the desired access requested by the client.

Now we’re ready to do perform all standard initializatio, including objack callback registration:

auto status = STATUS_SUCCESS;

UNICODE_STRING deviceName = RTL_CONSTANT_STRING(L"\\Device\\KProtect");

UNICODE_STRING symName = RTL_CONSTANT_STRING(L"\\??\\KProtect");

PDEVICE_OBJECT DeviceObject = nullptr;

do {

status = ObRegisterCallbacks(®, &g_Data.RegHandle);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to register callbacks (0x%08X)\n",

status));

break;

}

status = IoCreateDevice(DriverObject, 0, &deviceName, FILE_DEVICE_UNKNOWN,

0, FALSE, &DeviceObject);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create device object (0x%08X)\n",

status));

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 316

}

status = IoCreateSymbolicLink(&symName, &deviceName);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to create symbolic link (0x%08X)\n",

status));

break;

}

} while (false);

The rest of DriverEntry is nothing new, shown here for completeness:

if (!NT_SUCCESS(status)) {

if (g_Data.RegHandle)

ObUnRegisterCallbacks(g_Data.RegHandle);

if (DeviceObject)

IoDeleteDevice(DeviceObject);

return status;

}

DriverObject->DriverUnload = ProtectUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = ProtectCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ProtectDeviceControl;

return status;

}

Managing Protected Processes

The driver maintains an array of process IDs for processes under its protection. Managing these process
IDs is done by exposing three control codes (in ProtectorPublic.h):

#define KPROTECT_DEVICE 0x8101

#define IOCTL_PROTECT_ADD_PID \

CTL_CODE(KPROTECT_DEVICE, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PROTECT_REMOVE_PID \

CTL_CODE(KPROTECT_DEVICE, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PROTECT_REMOVE_ALL \

CTL_CODE(KPROTECT_DEVICE, 0x802, METHOD_NEITHER, FILE_ANY_ACCESS)

Before implementing the I/O Control codes, we should write functions to add processes, remove processes,
and find whether a specific PID is under the driver’s protection. Here is the function to add an array of
process IDs:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 317

ULONG AddProcesses(const ULONG* pids, ULONG count) {

ULONG added = 0;

ULONG current = 0;

Locker locker(g_Data.Lock);

for (int i = 0; i < MaxPids && added < count; i++) {

if (g_Data.Pids[i] == 0) {

g_Data.Pids[i] = pids[current++];

added++;

}

}

g_Data.PidsCount += added;

return added;

}

The function acquires the Executive Resource exlusively, as it is going to change the the PIDs array. The
loop body looks for an “empty” slot (where the PID is zero). If it finds one, it changes the value to the
current PID to house, and then moves on to the next. Finally, AddProcesses returns the number of added
PIDs.

The function does not check if the PID was already added. It doesn’t cause any particular issues, but it
might be nice to check for duplication, at the expense of a higher running time.

The opposite function to remove an array of PIDs is RemoveProcesses:

ULONG RemoveProcesses(const ULONG* pids, ULONG count) {

ULONG removed = 0;

Locker locker(g_Data.Lock);

for (int i = 0; i < MaxPids && removed < count; i++) {

auto pid = g_Data.Pids[i];

if(pid) {

for (ULONG c = 0; c < count; c++) {

if (pid == pids[c]) {

g_Data.Pids[i] = 0;

removed++;

break;

}

}

}

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 318

g_Data.PidsCount -= removed;

return removed;

}

This function does the reverse - when it finds a non-zero PID, it searches the PIDs to remove with the
current PID, and if found, removes the PID by zeroing the entry in the array.

Lastly, FindProcess searches for a PID in the array:

int FindProcess(ULONG pid) {

SharedLocker locker(g_Data.Lock);

ULONG exist = 0;

for (int i = 0; i < MaxPids && exist < g_Data.PidsCount; i++) {

if (g_Data.Pids[i] == 0)

continue;

if (g_Data.Pids[i] == pid)

return i;

exist++;

}

return -1;

}

This is a function we expect to be called many more times than AddProcesses or RemoveProcesses
- it should be called any time clients call OpenProcess or DuplicateHandle with a process handle to
duplicate. Any number of threads can be making such calls at any time. This is why it’s important to
make the function as efficient as possible.

The function does not change the PIDs array, which is why it can acquire the Executive Resource is shared
mode (and thus improve concurrency). Then the PID is searched in the array, returning its index if found,
or -1 if it can’t be found. Failing to find the PID should be the common case since the driver is likely to
protect a small number of processes. This is why the number of non-zero PIDs is counted, and if it reaches
the number of PIDs protected (g_Data.PidsCount), the loop can be exited early before the entire MaxPids
elements are traversed.

Now we’re ready to implement the IRP_MJ_DEVICE_CONTROL dispatch routine. We’ll start normally, by
preparing the information we need:

NTSTATUS ProtectDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = 0;

auto inputLen = dic.InputBufferLength;

Adding and removing PIDs Ioctls accept the same information - an array of ULONG values represening one
or more PIDs. We can share their implementation like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 319

switch (dic.IoControlCode) {

case IOCTL_PROTECT_ADD_PID:

case IOCTL_PROTECT_REMOVE_PID:

{

if (inputLen == 0 || inputLen % sizeof(ULONG) != 0) {

status = STATUS_INVALID_BUFFER_SIZE;

break;

}

auto pids = (ULONG*)Irp->AssociatedIrp.SystemBuffer;

if (pids == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;

}

ULONG count = inputLen / sizeof(ULONG);

auto added = dic.IoControlCode == IOCTL_PROTECT_ADD_PID

? AddProcesses(pids, count) : RemoveProcesses(pids, count);

status = added == count ? STATUS_SUCCESS : STATUS_NOT_ALL_ASSIGNED;

info = added * sizeof(ULONG);

break;

}

First we have the usual checks for a proper buffer size and the system buffer being non-NULL. Then, it’s
just a matter of calling AddProcesses or RemoveProcesses as needed. The final status is set to STATUS_-
SUCCESS if all the provided PIDs are added or removed. Otherwise, STATUS_NOT_ALL_ASSIGNED is set
as the error value. This status is returned from trying to enable privileges in a token, hijacked here as a
convenience (or more likely laziness on my part).

Removing all processes is fairly simple, done directly in the case itself:

case IOCTL_PROTECT_REMOVE_ALL:

Locker locker(g_Data.Lock);

RtlZeroMemory(g_Data.Pids, sizeof(g_Data.Pids));

g_Data.PidsCount = 0;

status = STATUS_SUCCESS;

break;

}

return CompleteRequest(Irp, status, info);

}

Removing all PIDs is just clearing the PIDs array and resetting the count of protected processes to zero.
Finally, CompleteRequest is used to complete the IRP with the current status and information, the same
helper function we used in chapter 9.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 320

The Pre-Callback

The most important part of the driver is removing the PROCESS_TERMINATE access mask for PIDs that are
currently being protected:

OB_PREOP_CALLBACK_STATUS

OnPreOpenProcess(PVOID, POB_PRE_OPERATION_INFORMATION Info) {

if(Info->KernelHandle)

return OB_PREOP_SUCCESS;

auto process = (PEPROCESS)Info->Object;

auto pid = HandleToULong(PsGetProcessId(process));

AutoLock locker(g_Data.Lock);

if (FindProcess(pid)) {

// found in list, remove terminate access

Info->Parameters->CreateHandleInformation.DesiredAccess &=

~PROCESS_TERMINATE;

}

return OB_PREOP_SUCCESS;

}

If the handle is a kernel handle, we let the operation continue normally, since we don’t want to stop kernel
code from working properly.

Now we need the process ID for which a handle is being opened. The data provided in the callback as the
object pointer. Fortunately, getting the PID is simplewith the PsGetProcessIdAPI. It accepts a PEPROCESS
and returns its ID.

The last part is checking whether we’re actually protecting this particular process or not, so we call
FindProcess under the protection of the lock. If found, we remove the PROCESS_TERMINATE access mask.

The Client Application

The client application should be able to add, remove and clear processes by issuing correct DeviceIoControl
calls. The command line interface is demonstrated by the following commands (assuming the executable
is Protect.exe):

Protect.exe add 1200 2820 (protect PIDs 1200 and 2820)

Protect.exe remove 2820 (remove protection from PID 2820)

Protect.exe clear (remove all PIDs from protection)

Here is the main function:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 321

int wmain(int argc, const wchar_t* argv[]) {

if(argc < 2)

return PrintUsage();

enum class Options {

Unknown,

Add, Remove, Clear

};

Options option;

if (::_wcsicmp(argv[1], L"add") == 0)

option = Options::Add;

else if (::_wcsicmp(argv[1], L"remove") == 0)

option = Options::Remove;

else if (::_wcsicmp(argv[1], L"clear") == 0)

option = Options::Clear;

else {

printf("Unknown option.\n");

return PrintUsage();

}

HANDLE hFile = ::CreateFile(L"\\\\.\\" PROCESS_PROTECT_NAME,

GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hFile == INVALID_HANDLE_VALUE)

return Error("Failed to open device");

std::vector<DWORD> pids;

BOOL success = FALSE;

DWORD bytes;

switch (option) {

case Options::Add:

pids = ParsePids(argv + 2, argc - 2);

success = ::DeviceIoControl(hFile, IOCTL_PROCESS_PROTECT_BY_PID,

pids.data(), static_cast<DWORD>(pids.size()) * sizeof(DWORD),

nullptr, 0, &bytes, nullptr);

break;

case Options::Remove:

pids = ParsePids(argv + 2, argc - 2);

success = ::DeviceIoControl(hFile, IOCTL_PROCESS_UNPROTECT_BY_PID,

pids.data(), static_cast<DWORD>(pids.size()) * sizeof(DWORD),

nullptr, 0, &bytes, nullptr);

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 322

case Options::Clear:

success = ::DeviceIoControl(hFile, IOCTL_PROCESS_PROTECT_CLEAR,

nullptr, 0, nullptr, 0, &bytes, nullptr);

break;

}

if (!success)

return Error("Failed in DeviceIoControl");

printf("Operation succeeded.\n");

::CloseHandle(hFile);

return 0;

}

The ParsePids helper function parses process IDs and returns them as a std::vector<DWORD> that is easy
to pass as an array by using the data() method on std::vector<T>:

std::vector<DWORD> ParsePids(const wchar_t* buffer[], int count) {

std::vector<DWORD> pids;

for (int i = 0; i < count; i++)

pids.push_back(_wtoi(buffer[i]));

return pids;

}

Finally, the Error function is the same we used in previous projects, while PrintUsage just displays simple
usage information.

The driver is installed in the usual way, and then started:

sc create protect type= kernel binPath= c:\book\processprotect.sys

sc start protect

Let’s test it by launching a process (Notepad.exe) as an example, protecting it, and then trying to kill it
with Task Manager. Figure 10-1 shows the notepad instance running.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 323

Figure 10-1: Notepad running

Now protect it:

protect add 5676

Clicking End task in Task Manager, pops up an error, shown in Figure 10-2.

Figure 10-2: Attempting to terminate notepad

We can remove the protection and try again. This time the process is terminated as expected.

protect remove 5676

In the case of notepad, even with protection, clicking the window close button or selecting File/Exit from
the menu would terminate the process. This is because it’s being done internally by calling ExitProcess
which does not involve any handles being opened. This means the protectionmechanismwe devised here
is good for processes without any user interface.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 324

Add a control code that allows querying the currently protected processes.

Registry Notifications

Somewhat similar to object notifications, the Configuration Manager (the part in the Executive that man-
ages the Registry) can be used to register for notifications when Registry keys or values are accessed.

Before we look at Registry callbacks, some background on the Registry itself might be helpful.

Registry Overview

The Registry is a fairly well-known artifact in Windows; it’s a hirarchical database, used to store system-
wide and user-related information. Most of the data in the Registry is persisted in files, but some is
generated dynamically and not persisted (volatile).

The typical tool used to examine the Registry is RegEdit, part of Windows. Figure 10-3 shows the hives
shown when running RegEdit. The documented user-mode APIs use this layout of the Registry in order
to access keys.

Figure 10-3: The hives shown in RegEdit

The following user-mode example shows how to open the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectX for read access, and read in the Version value,
which happens to be a string (figure 10-4):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 325

Figure 10-4: The HKEY_LOCAL_MACHINESOFTWAREMicrosoftDirectX key

HKEY hKey;

DWORD error = RegOpenKeyEx(HKEY_LOCAL_MACHINE,

L"SOFTWARE\\Microsoft\\DirectX", 0, KEY_READ, &hKey);

if (ERROR_SUCCESS == error) {

WCHAR version[64];

ULONG count = sizeof(version);

error = RegQueryValueEx(hKey, L"Version", nullptr, nullptr,

(BYTE*)version, &count);

if (ERROR_SUCCESS == error) {

printf("DirectX version: %ws\n", version);

}

RegCloseKey(hKey);

}

More details about the user-mode Registry API can be found in chapter 15 of my book “Windows 10
System Programming, part 2”.

If you run this little piece of code, and examine the key handle returned from RegOpenKeyEx in Process
Explorer, you’ll see something like figure 10-5. The key “name” seems to be what we have used.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 326

Figure 10-5: Registry key handle in Process Explorer

However, if you double-click the handle to show the object’s (key) properties, you’ll see something similar
to figure 10-6.

Figure 10-6: Registry key properties Process Explorer

Notice the key name in the title bar. We can confirm the name by copying the real object address and
feeding it to a kernel debugger using the !object command:

lkd> !object 0xFFFFE78011B43660

Object: ffffe78011b43660 Type: (ffffb90f07d8a220) Key

ObjectHeader: ffffe78011b43630 (new version)

HandleCount: 1 PointerCount: 32767

Directory Object: 0000000 Name: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT\DIRECTX

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 327

The “real” key name starts with “REGISTRY”, which is in fact a named kernel object stored at the root of
the Object Manager’s namespace (figure 10-7).

Figure 10-7: The Registry key object inWinObj

Clearly, the names used to access keys from documented Windows APIs go through some “translation”,
changingHKEY_LOCAL_MACHINE to REGISTRY\MACHINE. To see the entire picture, showing the “real”
Registry, you can use my RegExp tool, downloadable from my Github repo (figure 10-8). It shows both the
Registry as observed by user-mode APIs (upper part) and the real Registry (lowe part), as used internally
within the kernel. hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 328

Figure 10-8: The Registry Explorer tool

Table 10-1 shows the “translations” for common key names.

Table 10-1: Registry keys

User-facing key name Real key name Notes

HKEY_LOCAL_MACHINE REGISTRY\MACHINE

HKEY_USERS REGISTRY\USERS

HKEY_CURRENT_USER REGISTRY\USER\{userSID}

(no equivalence) REGISTRY\A Root of private process keys

(no equivalence) REGISTRY\WC Root of keys for Windows Containers (silos)

All the key names received/handled with the following Registry notifications always use the real key
names.

Using Registry Notifications

The CmRegisterCallbackEx API is used to register for such notifications. Its prototype is as follows:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 329

NTSTATUS CmRegisterCallbackEx (

In PEX_CALLBACK_FUNCTION Function,

In PCUNICODE_STRING Altitude,

In PVOID Driver, // PDRIVER_OBJECT

_In_opt_ PVOID Context,

Out PLARGE_INTEGER Cookie,

Reserved PVOID Reserved

Function is the callback itself, which we’ll look at in a moment. Altitude is the driver’s callback altitude,
which essentially has the same meaning as it has with object callbacks. The Driver argument should
be the driver object provided to DriverEntry. Context is a driver-defined value passed as-is to the
callback. Finally, Cookie is the result of the registration if successful. This cookie should be passed to
CmUnregisterCallback to unregister.

It’s a bit annoying that all the various registration APIs are inconsistent with respect to registra-
tion/unregistration: CmRegisterCallbackEx returns a LARGE_INTEGER as representing the registration;
ObRegisterCallbacks returns a PVOID; process and thread registration functions return nothing
(internally use the address of the callback itself to identify the registration). Finally, process and thread
unregistration is done with asymmetric APIs; Oh well.

The callback function is very generic, shown here:

NTSTATUS RegistryCallback (

In PVOID CallbackContext,

_In_opt_ PVOID Argument1,

_In_opt_ PVOID Argument2);

CallbackContext is the Context argument passed to CmRegisterCallbackEx. The first generic argument
is really an enumeration, REG_NOTIFY_CLASS, describing the operation for which the callback is being
invoked. The second argument is a pointer to a specific structure relevant to this type of notification. A
driver will typically switch on the notification type like so:

NTSTATUS OnRegistryNotify(PVOID, PVOID Argument1, PVOID Argument2) {

switch ((REG_NOTIFY_CLASS)(ULONG_PTR)Argument1) {

//...

}

The callback is called at IRQL PASSIVE_LEVEL (0) by the thread performing the operation.

Table 10-2 shows some values from the REG_NOTIFY_CLASS enumeration and the corresponding structure
passed in as Argument2.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 330

Table 10-2: Some registry notifications and associated structures

Notification Associated structure

RegNtPreDeleteKey REG_DELETE_KEY_INFORMATION

RegNtPostDeleteKey REG_POST_OPERATION_INFORMATION

RegNtPreSetValueKey REG_SET_VALUE_KEY_INFORMATION

RegNtPostSetValueKey REG_POST_OPERATION_INFORMATION

RegNtPreCreateKey REG_PRE_CREATE_KEY_INFORMATION

RegNtPostCreateKey REG_POST_CREATE_KEY_INFORMATION

Handling Pre-Notifications

The callback is called for pre-operations before these are carried out by the Configuration Manager. At
that point, the driver has the following options:

• Returning STATUS_SUCCESS from the callback instructs the Configuration Manager to continue pro-
cessing the operation normally (including calling other drivers that have registered for notifications).

• Return some failure status from the callback. In this case, the Configuration Manager returns to the
caller with that status, and the post-operation will not be invoked.

• Handle the request in some way, and then return STATUS_CALLBACK_BYPASS from the callback. The
Configuration Manager returns success to the caller and does not invoke the post-operation. The
driver must take care to set proper values in the REG_xxx_KEY_INFORMATION structure provided in
the callback.

Handling Post-Operations

After the operation is completed, and assuming the driver did not prevent the post-operation from oc-
curring, the callback is invoked after the Configuration Manager performs the requested operation. The
structure provided for many post operations is shown here:

typedef struct _REG_POST_OPERATION_INFORMATION {

PVOID Object; // input

NTSTATUS Status; // input

PVOID PreInformation; // The pre information

NTSTATUS ReturnStatus; // can change the outcome of the operation

PVOID CallContext;

PVOID ObjectContext;

PVOID Reserved;

} REG_POST_OPERATION_INFORMATION,*PREG_POST_OPERATION_INFORMATION;

The callback has the following options for a post-operation:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 331

• Look at the operation result and do something benign (log it, for instance).
• Modify the return status by setting a new status value in the ReturnStatus field of the post-
operation structure, and return STATUS_CALLBACK_BYPASS from the callback. The Configuration
Manager returns this new status to the caller.

• Modify the output parameters in the REG_xxx_KEY_INFORMATION structure and return STATUS_-
SUCCESS. The Configuration Manager returns this new data to the caller.

The PreInformation member of the post-operation structure points to the pre-information
structure assocaited with that operation.

Care must be taken if data is changed when a post-operation, or if a successful status is changed
to a failed one or vice versa. This might require the driver to deallocate or allocate key objects.

Extending the SysMon Driver

We’ll extend our SysMon driver from chapter 9 to include notifications for a Registry operation. As an
example, we’ll add notifications for write operations to anywhere under HKEY_LOCAL_MACHINE.

First, we’ll define a data structure that would include the reported information (in SysMonPublic.h):

struct RegistrySetValueInfo : ItemHeader {

ULONG ProcessId;

ULONG ThreadId;

USHORT KeyNameOffset; // from beginning of structure

USHORT ValueNameOffset; // from beginning of structure

ULONG DataType; // REG_xxx

ULONG DataSize; // actual size

USHORT DataOffset;

USHORT ProvidedDataSize;

};

Key names, value names and values could be large, so it’s best not to use fixed-size arrays (although that
would be much simpler), but store offsets to the names and value. Each name will be NULL-terminated,
which avoids the need to store lengths of strings (as we did in the command line case in chapter 9). The
data itself could be arbitrarily large, so we’ll have to decide on a maximum length to copy as part of the
notification.

DataType is one of the REG_xxx type constants, such as REG_SZ, REG_DWORD, REG_BINARY, etc. These values
are the same as used with user-mode APIs.

Next, we’ll add a new event type for this notification:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 332

enum class ItemType : short {

None,

ProcessCreate,

ProcessExit,

ThreadCreate,

ThreadExit,

ImageLoad,

RegistrySetValue // new value

};

It’s possible to subdivide Registry notifications further by defining a Registry item type and then
define specific items for different Registry operations. In this example, we just add one specific Registry
operation, but you may want to take the more generic approach if multiple Registry operations are of
interest.

In DriverEntry, we need to add registry callback registration as part of the do/while(false) block. The
returned cookie representing the registration is stored in a global variable:

UNICODE_STRING altitude = RTL_CONSTANT_STRING(L"7657.124");

status = CmRegisterCallbackEx(OnRegistryNotify, &altitude, DriverObject,

nullptr, &g_RegCookie, nullptr);

if(!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "failed to set registry callback (%08X)\n",

status));

break;

}

It would have been better to encapsulate all state in the Globals strcuture and provide methods
for initializing and uninitializing all the callbacks within this class. This is left as an exercise to
the reader.

We must also unregister the notification in the Unload routine:

CmUnRegisterCallback(g_RegCookie);

Handling Registry Callback

Our callback should only care about writes done to HKEY_LOCAL_MACHINE. First, we switch on the
operation of interest:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 333

NTSTATUS OnRegistryNotify(PVOID context, PVOID arg1, PVOID arg2) {

UNREFERENCED_PARAMETER(context);

switch ((REG_NOTIFY_CLASS)(ULONG_PTR)arg1) {

case RegNtPostSetValueKey:

//...

}

return STATUS_SUCCESS;

}

In this driver we don’t care about any other operation, so after the switch we simply return a successful
status. Note that we examine the post-operation, since only the result is interesting for this driver. Next,
inside the case we care about, we cast the second argument to the post-operation data and check if the
operation succeeded:

auto args = (REG_POST_OPERATION_INFORMATION*)arg2;

if (!NT_SUCCESS(args->Status))

break;

If the operation is not successful, we bail out. This is just an arbitrary decision for this driver; a different
driver might be interested in these failed attempts.

Next, we need to check if the key in question is under HKEY_LOCAL_MACHINE, which as we’ve seen is
in actuality \REGISTRY\MACHINE.
The key path is not stored in the post-structure and not even stored in the pre-structure directly. Instead, the
Registry key object itself is provided as part of the post-information structure. We then need to extract the
key name with CmCallbackGetKeyObjectIDEx (Windows 8+) or CmCallbackGetKeyObjectID (earlier
versions), and see if it’s starting with \REGISTRY\MACHINE\. These APIs are declared as follows:

NTSTATUS CmCallbackGetKeyObjectID (

In PLARGE_INTEGER Cookie,

In PVOID Object,

_Out_opt_ PULONG_PTR ObjectID,

_Outptr_opt_ PCUNICODE_STRING *ObjectName);

NTSTATUS CmCallbackGetKeyObjectIDEx (

In PLARGE_INTEGER Cookie,

In PVOID Object,

_Out_opt_ PULONG_PTR ObjectID,

_Outptr_opt_ PCUNICODE_STRING *ObjectName,

In ULONG Flags); // must be zero

Cookie identifies the registration cookie returned from CmRegisterCallbackEx, identifying the driber.
Object is the Registry key whos name we need. ObjectID is an optional returned value that provides the
unique identifier of the key in question. Finally, ObjectName is a pointer to a UNICODE_STRING pointer
retruned with the full key name itself.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 334

The twoAPIs are identical from a parameter perspective, as the Flags argument to CmCallbackGetKeyObjectIDEx
must be zero. There are differences in implementation, however:

First, The returned key name from CmCallbackGetKeyObjectID is valid until the last handle of the key
is closed. With CmCallbackGetKeyObjectIDEx, the name must be freed by calling
CmCallbackReleaseKeyObjectIDEx:

VOID CmCallbackReleaseKeyObjectIDEx (_In_ PCUNICODE_STRING ObjectName);

Second, if the name of the Registry key is changed after it’s been obtainedwith CmCallbackGetKeyObjectID,
subsequent calls to CmCallbackGetKeyObjectID will return the old, stale, name. In contrast,
CmCallbackReleaseKeyObjectIDEx always returns the current key name.

Call CmCallbackReleaseKeyObjectIDEx is you’re targeting Windows 8 or higher.

Here is the call to obtain the key name and checking if it’s part of HKLM :

static const WCHAR machine[] = L"\\REGISTRY\\MACHINE\\";

PCUNICODE_STRING name;

if (NT_SUCCESS(CmCallbackGetKeyObjectIDEx(&g_RegCookie, args->Object,

nullptr, &name, 0))) {

if (wcsncmp(name->Buffer, machine, ARRAYSIZE(machine) - 1) == 0) {

If the condition holds, then we need to capture the information of the operation into our notification
structure and add it to the queue. The needed information (data type, value name, actual value, etc.)
is provided with the pre-information structure that is luckily available as part of the post-information
structure we receive directly.

auto preInfo = (REG_SET_VALUE_KEY_INFORMATION*)args->PreInformation;

NT_ASSERT(preInfo);

Calculating the correct size to allocate is more involved than previous cases, as we have several variable-
length strings to deal with. We can start with the base data structure size and then add the sizes (in bytes)
of the strings (not forgetting to leave room for a terminating NULL):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 335

USHORT size = sizeof(RegistrySetValueInfo);

USHORT keyNameLen = name->Length + sizeof(WCHAR);

USHORT valueNameLen = preInfo->ValueName->Length + sizeof(WCHAR);

//

// restrict copied data to 256 bytes

//

USHORT valueSize = (USHORT)min(256, preInfo->DataSize);

size += keyNameLen + valueNameLen + valueSize;

The driver stores the data itself, and since it’s unbounded in theory, we decide to store no more than 256
bytes. We will still report the true size of the data - the data itself may be truncated.

Now comes the real work of making the allocation and filling all the details. First, the fixed-size data,
including the header:

auto info = (FullItem<RegistrySetValueInfo>*)ExAllocatePoolWithTag(PagedPool,

size + sizeof(LIST_ENTRY), DRIVER_TAG);

if (info) {

auto& data = info->Data;

KeQuerySystemTimePrecise(&data.Time);

data.Type = ItemType::RegistrySetValue;

data.Size = size;

data.DataType = preInfo->Type;

data.ProcessId = HandleToULong(PsGetCurrentProcessId());

data.ThreadId = HandleToUlong(PsGetCurrentThreadId());

data.ProvidedDataSize = valueSize;

data.DataSize = preInfo->DataSize;

Next, we copy the strings and set the offsets:

// first offset starts at the end of the structure

//

USHORT offset = sizeof(data);

data.KeyNameOffset = offset;

wcsncpy_s((PWSTR)((PUCHAR)&data + offset),

keyNameLen / sizeof(WCHAR), name->Buffer,

name->Length / sizeof(WCHAR));

offset += keyNameLen;

data.ValueNameOffset = offset;

wcsncpy_s((PWSTR)((PUCHAR)&data + offset),

valueNameLen / sizeof(WCHAR), preInfo->ValueName->Buffer,

preInfo->ValueName->Length / sizeof(WCHAR));

offset += valueNameLen;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 336

data.DataOffset = offset;

memcpy((PUCHAR)&data + offset, preInfo->Data, valueSize);

// finally, add the item

g_State.AddItem(&info->Entry);

Using wcsncpy_s to copy the strings is a good choice in this case, since it appends NULL at the end of
strings (if there is enough space, and we made sure of that).

Finally, if CmCallbackGetKeyObjectIDEx succeeds, the resulting key name must be explicitly freed:

CmCallbackReleaseKeyObjectIDEx(name);

Here is the full function for convenience:

NTSTATUS OnRegistryNotify(PVOID context, PVOID arg1, PVOID arg2) {

UNREFERENCED_PARAMETER(context);

switch ((REG_NOTIFY_CLASS)(ULONG_PTR)arg1) {

case RegNtPostSetValueKey:

auto args = (REG_POST_OPERATION_INFORMATION*)arg2;

if (!NT_SUCCESS(args->Status))

break;

static const WCHAR machine[] = L"\\REGISTRY\\MACHINE\\";

PCUNICODE_STRING name;

if (NT_SUCCESS(CmCallbackGetKeyObjectIDEx(

&g_RegCookie, args->Object, nullptr, &name, 0))) {

//

// look for HKLM subkeys

//

if (wcsncmp(name->Buffer, machine, ARRAYSIZE(machine) - 1) == 0) {

auto preInfo = (REG_SET_VALUE_KEY_INFORMATION*)args->PreInformation;

USHORT size = sizeof(RegistrySetValueInfo);

USHORT keyNameLen = name->Length + sizeof(WCHAR);

USHORT valueNameLen = preInfo->ValueName->Length + sizeof(WCHAR);

//

// restrict copied data to 256 bytes

//

USHORT valueSize = (USHORT)min(256, preInfo->DataSize);

size += keyNameLen + valueNameLen + valueSize;

auto info = (FullItem<RegistrySetValueInfo>*)

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 337

ExAllocatePoolWithTag(PagedPool,

size + sizeof(LIST_ENTRY), DRIVER_TAG);

if (info) {

auto& data = info->Data;

KeQuerySystemTimePrecise(&data.Time);

data.Type = ItemType::RegistrySetValue;

data.Size = size;

data.DataType = preInfo->Type;

data.ProcessId = HandleToULong(PsGetCurrentProcessId());

data.ThreadId = HandleToUlong(PsGetCurrentThreadId());

data.ProvidedDataSize = valueSize;

data.DataSize = preInfo->DataSize;

//

// first offset starts at the end of the structure

//

USHORT offset = sizeof(data);

data.KeyNameOffset = offset;

wcsncpy_s((PWSTR)((PUCHAR)&data + offset),

keyNameLen / sizeof(WCHAR), name->Buffer,

name->Length / sizeof(WCHAR));

offset += keyNameLen;

data.ValueNameOffset = offset;

wcsncpy_s((PWSTR)((PUCHAR)&data + offset),

valueNameLen / sizeof(WCHAR), preInfo->ValueName->Buffer,

preInfo->ValueName->Length / sizeof(WCHAR));

offset += valueNameLen;

data.DataOffset = offset;

memcpy((PUCHAR)&data + offset, preInfo->Data, valueSize);

g_State.AddItem(&info->Entry);

}

else {

KdPrint((DRIVER_PREFIX

"Failed to allocate memory for registry set value\n"));

}

}

CmCallbackReleaseKeyObjectIDEx(name);

}

break;

}

return STATUS_SUCCESS;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 338

Modified Client Code

The client application should be modified to support this new event type. Here is the case added as part
of DisplayInfo:

case ItemType::RegistrySetValue:

{

DisplayTime(header->Time);

auto info = (RegistrySetValueInfo*)buffer;

printf("Registry write PID=%u, TID=%u: %ws\\%ws type: %d size: %d data: ",

info->ProcessId, info->ThreadId,

(PCWSTR)((PBYTE)info + info->KeyNameOffset),

(PCWSTR)((PBYTE)info + info->ValueNameOffset),

info->DataType, info->DataSize);

DisplayRegistryValue(info);

break;

}

The data itself is displayed by a helper functiom, DisplayRegistryValue:

void DisplayRegistryValue(const RegistrySetValueInfo* info) {

auto data = (PBYTE)info + info->DataOffset;

switch (info->DataType) {

case REG_DWORD:

printf("0x%08X (%u)\n", *(DWORD*)data, *(DWORD*)data);

break;

case REG_SZ:

case REG_EXPAND_SZ:

printf("%ws\n", (PCWSTR)data);

break;

// add other cases... (REG_QWORD, REG_LINK, etc.)

default:

DisplayBinary(data, info->ProvidedDataSize);

break;

}

}

DisplayBinary is a simple helper function that shows binary data as a series of hex values shown here
for completeness:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 339

void DisplayBinary(const BYTE* buffer, DWORD size) {

printf("\n");

for (DWORD i = 0; i < size; i++) {

printf("%02X ", buffer[i]);

//

// go to new line every 16 values

//

if ((i + 1) % 16 == 0)

printf("\n");

}

printf("\n");

}

Here is some output for this enhanced client and driver:

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\

rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\

\CodecAppSvcAggregator\HbActiveMillis type: 11 size: 8 data:

4E 88 2B 05 00 00 00 00

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\

rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\

\CodecAppSvcAggregator\HbErrorMillis type: 11 size: 8 data:

00 00 00 00 00 00 00 00

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\

rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\

\CodecAppSvcAggregator\HbSeq type: 4 size: 4 data: 0x00000005 (5)

Err type: 1 size: 30 data: ProcTerminated

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\

rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\

\UpdateHeartbeatScan\HbErr type: 4 size: 4 data: 0x00000000 (0)

11:14:36.838: Registry write PID=7148, TID=8648: \REGISTRY\MACHINE\SOFTWARE\Mic\

rosoft\Windows NT\CurrentVersion\Notifications\Data\418A073AA3BC1C75 type: 3 si\

ze: 464 data:

90 05 00 00 00 00 00 00 04 00 04 00 01 00 01 00

01 01 00 00 A5 AD CF 00 4F 00 02 00 00 00 01 91

40 01 02 99 66 00 03 03 DD 01 03 89 A8 01 0D 28

C7 01 0D D3 F9 00 0E BA CD 00 0F 16 8C 01 10 FF

88 01 1E C3 30 02 22 78 CE 00 24 AC C7 00 29 45

00 02 29 45 01 01 2F A8 FF 01 31 48 4F 00 36 1E

E1 01 3E 5B ED 01 46 48 B6 00 48 3B DB 01 4E 12

Enhance SysMon by adding I/O control codes to enable/disable certain notification types
(processes, threads, image loads, Registry).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 340

Performance Considerations

The Registry callback is invoked for every registry operation; there is no apriori way to request filtering of
certain operations only. This means the callback needs to be as quick as possible since the caller is waiting.
Also, there may be more than one driver in the chain of callbacks.

Some Registry operations, especially read operations happen in large quantities, so it’s better for a driver
to avoid processing read operations, if possible. If it must process read operations, it should at least limit
its processing to certain keys of interest, such as anything under HKLM\System\CurrentControlSet (just
an example). If processing can be done asynchronously, a work item could be used.
Write and create operations are used much less often, so in these cases the driver can do more if needed.

Miscellaenous Notes

• The documentation provides some warnings when dealing with Registry notifications, worth re-
peating here.

Certain Registry operations are lightly-documented because they are not very useful. Modifying the
following operations should be avoided as it’s difficult and error-prone: NtRestoreKey, NtSaveKey,
NtSaveKeyEx, NtLoadKeyEx, NtUnloadKey2, NtUnloadKeyEx, NtReplaceKey, NtRenameKey,
NtSetInformationKey.

• The operations RegNtPostCreateKeyEx and RegNtPostOpenKeyEx provide a Registry key object
(Object member in REG_POST_OPERATION_INFORMATION). This member is valid only if the Status
member is STATUS_SUCCESS. Otherwise, its value is undefined.

• For some operations, theObject member points to a Registry key that is being destroyed (its internal
reference count is zero). These are the operations:

– RegNtPreKeyHandleClose (REG_KEY_HANDLE_CLOSE_INFORMATION structure)
– RegNtPostKeyHandleClose (REG_POST_OPERATION_INFORMATION structure)
– RegNtCallbackObjectContextCleanup (REG_CALLBACK_CONTEXT_CLEANUP_INFORMATION
structure)

TheObject member should not be passed to general kernel routines (such as ObReferenceObjectByPointer).
However, for the first two cases, the object can still be used within the callback by calling Comfiguration
Manager functions (e.g. CmCallbackGetKeyObjectIDEx).

1. Implement a driver that protects a Registry key from modifications. A client can send
the driver registry keys to protect or unprotect.

2. Implement a driver that redirects Registry write operations coming from selected
processes (configured by a client application) to their own private key if they access
HKEY_LOCAL_MACHINE. If the app is writing data, it goes to its private store. If it’s
reading data, first check the private store, and if no such value is found, go to the real
Registry key.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 10: Object and Registry Notifications 341

Summary

In this chapter, we looked at two callback mechanisms supported by the kernel - obtaining handles to
certain object types, and Registry access. In the next chapter, we’ll look at more techniques that may be
useful for a driver developer.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming
Techniques (Part 2)
In this chapter we’ll continue to examine techniques of various degrees of usefulness to driver developers.

In this chapter:

• Timers
• Generic Tables
• Hash Tables
• Singly Linked Lists
• Callback Objects

Timers

We have briefly seen an example that uses a kernel timer in chapter 6. In this section, we’ll cover kernel
timers in more detail, as well as high-resolution timers, which have been introduced in Windows 8.1.

Kernel Timers

A kernel timer is represented by the KTIMER structure that must be allocated from non-paged mem-
ory. The timer can be set to one shot or periodic. The interval itself can be relative or absolute, mak-
ing it quite flexible. A kernel timer is a dispatcher object, which means it can be waited upon with
KeWaitForSingleObject and similar APIs. Once a KTIMER is allocated, it must be initialized by calling
KeInitializeTimer or KeInitializeTimerEx:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 343

VOID KeInitializeTimer (_Out_ PKTIMER Timer);

typedef enum _TIMER_TYPE {

NotificationTimer,

SynchronizationTimer

} TIMER_TYPE;

VOID KeInitializeTimerEx (

Out PKTIMER Timer,

In TIMER_TYPE Type);

There are two kinds of timers (similar to the two kinds of event kernel object types) - NotificationTimer
that releases any number ofwaiting threads, and remains in the signaled state, or a SynchronizationTimer,
that after releasing a single thread goes to the non-signaled state automatically. KeInitializeTimer is a
shortcut that initializes a notification timer.

Once the timer is initialized, its interval can be set with KeSetTimer (one shot) or KeSetTimerEx (periodic):

BOOLEAN KeSetTimer (

Inout PKTIMER Timer,

In LARGE_INTEGER DueTime,

_In_opt_ PKDPC Dpc);

BOOLEAN KeSetTimerEx (

Inout PKTIMER Timer,

In LARGE_INTEGER DueTime,

In LONG Period,

_In_opt_ PKDPC Dpc);

Both functions set the timer interval based on a LARGE_INTEGER structure, that is set to a negative number
for a relative count, and a positive number for an absolute count from January 1, 1601, at midnight GMT.
The number (whether positive or negative) is specified as 100nsec units. For example, 1msec equals 10000
x 100nsec units. Here is how to specify a relative interval of 10 milliseconds:

LARGE_INTEGER interval;

interval.QuadPart = -10 * 10000; // 10 msec

We have encountered these units before when discussing KeDelayExecutionThread in chapter 8.

The Period argument in KeSetTimerEx indicates the period the timer should count repeatedly from its
first signaling. Curiously enough, it’s specified in milliseconds. Finally, a DPC object can be specified as

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 344

an alternative to waiting. If one is provided, it will be inserted in a CPU’s DPC queue and run just like
any other DPC.

Both functions return TRUE if the timer is already in the system’s timer queue. If it was there before the
call, it’s implicitly cancelled and set to the new specified time. With KeSetTimer, once the timer expires,
it won’t restart unless another call to KeSetTimer(Ex) is made. Regardless, a timer can be cancelled by
calling KeCancelTimer:

BOOLEAN KeCancelTimer (_Inout_ PKTIMER);

KeCancelTimer returns TRUE if the timer was in the system’s timer queue - which is always TRUE for a
periodic timer.

Another available API to set a timer’s interval is KeSetCoalescableTimer:

BOOLEAN KeSetCoalescableTimer (

Inout PKTIMER Timer,

In LARGE_INTEGER DueTime,

In ULONG Period,

In ULONG TolerableDelay,

_In_opt_ PKDPC Dpc);

Most parameters are the same as KeSetTimerEx, except for the additional TolerableDelay. This param-
eter allows a caller to set some “tolerance” interval in milliseconds that indicates that it’s ok to program
the timer to expire slightly after the provided DueTime by no more than the tolerance delay. The period (if
non-zero) can be up to the tolerance higher or lower. The point of a coallesable timer is to allow the system
to save energy by not waking up too often to signal timers. Close-enough timers will be “coallesced” by
the system, so that a single wakeup can signal multiple timers if their tolerance allows it.

Finally, you can query a timer’s signaled state by calling KeReadStateTimer (may be useful for debugging
purposes):

BOOLEAN KeReadStateTimer (_In_ PKTIMER Timer);

Timer Resolution

It may seem from the KeSetTimer(Ex) APIs that the timer’s resolution can be really high, as the units are
very small. For example, it seems you can set a timer to expire after 1 microsecond by specifiying the value
-10 for DueTime. This does not work as expected, however.

There is a default timer resolution, which is typically 15.625 milliseconds in today’s systems. This is the
default (and maximum) resolution, that is also used by the kernel’s scheduler. This resolution can be
changed, however. A quick way to determine the clock’s resolution is to run the Sysinternals ClockRes.exe
command line tool. Here is an example run:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 345

C:\>clockres

Clockres v2.1 - Clock resolution display utility

Copyright (C) 2016 Mark Russinovich

Sysinternals

Maximum timer interval: 15.625 ms

Minimum timer interval: 0.500 ms

Current timer interval: 1.000 ms

The current timer interval is the active one, and is (more often than not) lower than the default. This is
because user mode processes can change the clock’s resolution to get better timing in wait operations,
sleep calls, and timers. For example, the timeBeginPeriod or timeSetEvent user mode multimedia APIs
allow setting up a timer with up to 1 millisecond resolution (both call the NtSetTimerResolution native
API). This causes the clock’s resolution to be reprogrammed to cater for the client process. The system
keeps track of processes that request resolution changes, and so has to make sure the clock is using the
highest resolution (lowest interval) requested by any process.

A kernel driver can specify its own request for a resolution value by calling ExSetTimerResolution:

ULONG ExSetTimerResolution (

In ULONG DesiredTime,

In BOOLEAN SetResolution);

The DesiredTime is in 100-nanosecond (nsec) units. If SetResolution is TRUE, the system adjusts the
resolution to the closest value it can support, and returns the actual set value. If SetResolution is FALSE,
the system decrements an internal counter (incremented for each ExSetTimerResolution call with TRUE),
and if zero is reached, resets the resolution to its initial value. Of course, this will not occur as long as there
are user mode processes that requested a higher resolution than the default.

With Windows 8 and later, you can also query the current resolution without making any changes with
ExQueryTimerResolution:

void ExQueryTimerResolution (

Out PULONG MaximumTime,

Out PULONG MinimumTime,

Out PULONG CurrentTime);

The returned values are in 100-nsec units. Converted to milliseconds, these numbers are the same ones
displayed by ClockRes.

The KeQueryTimeIncrement function returns the same value as the maximum timer resolu-
tion.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 346

Write a C++ RAII wrapper for working with timers.

High-Resolution Timers

Starting with Windows 8.1, the kernel provides support for another type of timer - high-resolusion timers,
that can be used instead of the “standard” timers. These newer timers offer the following benefits over
standard timers:

• There is no need to set the timer resolution explicitly - it will be set as required based on the provided
interval (and revert automatically as well).

• High resolution timers never expire earlier than their set time.
• There is no need to set up an explicit DPC to be used as callback - the callback is specified directly
as part of setting the timer. The system will invoke the callback at IRQL DISPATCH_LEVEL (2).

A high-resolution timer must be first allocated by calling ExAllocateTimer:

PEX_TIMER ExAllocateTimer (

_In_opt_ PEXT_CALLBACK Callback,

_In_opt_ PVOID CallbackContext,

In ULONG Attributes);

The callback provided must have the following prototype:

VOID EXT_CALLBACK (

In PEX_TIMER Timer,

_In_opt_ PVOID Context);

The CallbackContext parameter to ExAllocateTimer is passed as-is to the callback function, along with
the timer object itself. The attributes provided can be zero or the following:

• EX_TIMER_HIGH_RESOLUTION - specifies that the timer should be a high-resolution one. Without
this flag, the timer is similar in terms of accuracy to a standard timer.

• EX_TIMER_NO_WAKE - indicates the timer should expire at its interval plus its tolerance delay (set
with ExSetTimer discussed shortly). This flag conflicts with the previous one.

• EX_TIMER_NOTIFICATION - creates the timer as a notification timer as opposed to a synchronization
timer (if this flag is not specified). The timer object can be waited upon just like standard timers.

ExAllocateTimer returns an opaque pointer to the allocated timer object that must be eventually freed
with ExDeleteTimer (shown later).

The next step is to set the timer interval and start it by calling ExSetTimer:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 347

BOOLEAN ExSetTimer (

In PEX_TIMER Timer,

In LONGLONG DueTime,

In LONGLONG Period,

_In_opt_ PEXT_SET_PARAMETERS Parameters);

High-resolution timers only work with relative time, meaning DueTime must be a negative value (in the
usual 100 nsec units). The optional Period parameter is the period for a periodic timer. It’s specified in the
same 100 nsec units (contrary to a standard timer where the period is specified in milliseconds). Finally,
Parameters can be NULL or a pointer to EXT_SET_PARAMETERS:

typedef struct _EXT_SET_PARAMETERS_V0 {

ULONG Version;

ULONG Reserved;

LONGLONG NoWakeTolerance;

} EXT_SET_PARAMETERS, *PEXT_SET_PARAMETERS;

The only parameter of interest is NoWakeTolerance, indicates the timer’s maximum tolerance for waking
a processor. If the value is set to EX_TIMER_UNLIMITED_TOLERANCE, the timer never wakes a processor in
a low power state. Initializing this structure must be done with ExInitializeSetTimerParameters that
sets the Version member to the correct value, Reserved and NoWakeTolerance to zero. Here is a typical
way of working with EXT_SET_PARAMETERS if desired:

EXT_SET_PARAMETERS params;

ExInitializeSetTimerParameters(¶ms);

params.NoWakeTolerance = -5000; // 0.5 msec

ExSetTimer(timer, -15000, 0, ¶ms); // 1.5 msec interval

ExSetTimer cancels any previous timer that may have been active and sets the new values. If the timer
was active, the function returns TRUE. Otherwise, it returns FALSE.

As with standard timers, it’s possible to cancel a high-resolution timer with ExCancelTimer:

BOOLEAN ExCancelTimer (

Inout PEX_TIMER Timer,

_In_opt_ PEXT_CANCEL_PARAMETERS Parameters);

The function returns TRUE if the timer was actually cancelled, or FALSE if the timer was inactive - nothing
to cancel. Parameters must be NULL.

Finally, a timer object must be deleted with ExDeleteTimer:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 348

BOOLEAN ExDeleteTimer (

In PEX_TIMER Timer,

In BOOLEAN Cancel,

In BOOLEAN Wait,

_In_opt_ PEXT_DELETE_PARAMETERS Parameters);

Cancel indicates whether to cancel the timer (if active). If Cancel is set to TRUE, then Wait can be set to
TRUE as well to wait until the timer has been cancelled. If Wait is set to TRUE, so must Cancel. Similar to
ExSetTimer, an optional EXT_DELETE_PARAMETERS structure can be provided, that includes an optional
callback to be invoked when the timer is finally deleted. ExDeleteTimer returns TRUE if Cancel is TRUE
and the timer was cancelled.

Write a C++ RAII wrapper for High-Resolution timers.

You can find examples for using standard and high-resolution timers in the Timers project, part of the
source code for this chapter. The example driver has a few I/O control codes to set up a standard timer
and a high-resolution timer. Here is an excerpt for creating a high-resolution timer:

// in TimersPublic.h

struct PeriodicTimer {

ULONG Interval;

ULONG Period;

};

// in DriverEntry

// g_HiRes is PEX_TIMER

g_HiRes = ExAllocateTimer(HiResCallback, nullptr,

EX_TIMER_HIGH_RESOLUTION);

//...

case IOCTL_TIMERS_SET_HIRES:

//check buffer... and then

auto data = (PeriodicTimer*)Irp->AssociatedIrp.SystemBuffer;

ExSetTimer(g_HiRes, -10000LL * data->Interval,

10000LL * data->Period, nullptr);

status = STATUS_SUCCESS;

break;

//...

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 349

void HiResCallback(PEX_TIMER, PVOID) {

auto counter = KeQueryPerformanceCounter(nullptr);

DbgPrint(DRIVER_PREFIX "Hi-Res Timer DPC: IRQL=%d Counter=%lld\n",

(int)KeGetCurrentIrql(), counter.QuadPart);

}

The TimersTest user-mode application can be used to test the timers. Here is the entire code:

#include <Windows.h>

#include <stdio.h>

#include "..\Timers\TimersPublic.h"

int main(int argc, const char* argv[]) {

if (argc < 2) {

printf("Usage: TimersTest [query | stop | set [hires] "

"[interval(ms)] [period(ms)]]\n");

}

HANDLE hDevice = CreateFile(L"\\\\.\\Timers", GENERIC_READ | GENERIC_WRITE,

0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {

printf("Error opening device (%u)\n", GetLastError());

return 1;

}

DWORD bytes;

if (argc < 2 || _stricmp(argv[1], "query") == 0) {

TimerResolution res;

if (DeviceIoControl(hDevice, IOCTL_TIMERS_GET_RESOLUTION, nullptr,

0, &res, sizeof(res), &bytes, nullptr)) {

printf("Timer resolution (100nsec): Max: %u Min: %u "

"Current: %u Inc: %u\n",

res.Maximum, res.Minimum, res.Current, res.Increment);

float factor = 10000.0f;

printf("Timer resolution (msec): Max: %.3f Min: %.3f "

"Current: %.3f Inc: %.3f\n",

res.Maximum / factor, res.Minimum / factor,

res.Current / factor, res.Increment / factor);

}

}

else if (_stricmp(argv[1], "set") == 0 && argc > 2) {

int arg = 2;

bool hires = false;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 350

if (_stricmp(argv[2], "hires") == 0) {

hires = true;

arg++;

}

PeriodicTimer data{};

if (argc > arg) {

data.Interval = atoi(argv[arg]);

arg++;

if (argc > arg) {

data.Period = atoi(argv[arg]);

}

if (!DeviceIoControl(hDevice,

hires ? IOCTL_TIMERS_SET_HIRES : IOCTL_TIMERS_SET_PERIODIC,

&data, sizeof(data), nullptr, 0, &bytes, nullptr))

printf("Error setting timer (%u)\n", GetLastError());

}

}

else if (_stricmp(argv[1], "stop") == 0) {

DeviceIoControl(hDevice, IOCTL_TIMERS_STOP,

nullptr, 0, nullptr, 0, &bytes, nullptr);

}

else {

printf("Unknown option.\n");

}

CloseHandle(hDevice);

return 0;

}

I/O Timer

There is yet another type of timer that can be used by a driver, known as an I/O Timer. This timer exists
for every device object (just one per device). When started, it runs a callback at IRQL DISPATCH_LEVEL
every second. There is no way to further customize it. It can be used as a “watchdog” of some sort, when
high resolution is not required.

The first step in using an I/O timer is to initialize it:

NTSTATUS IoInitializeTimer(

In PDEVICE_OBJECT DeviceObject,

In PIO_TIMER_ROUTINE TimerRoutine,

_In_opt_ PVOID Context);

Notice the device object parameter - this is how the I/O timer is identified. TimerRoutine has the following
prototype:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 351

VOID IO_TIMER_ROUTINE (

In struct _DEVICE_OBJECT *DeviceObject,

_In_opt_ PVOID Context);

To start the timer, call IoStartTimer. To stop it, call IoStopTimer:

VOID IoStartTimer(_In_ PDEVICE_OBJECT DeviceObject);

VOID IoStopTimer(_In_ PDEVICE_OBJECT DeviceObject);

Generic Tables

The term “generic tables” is used by the kernel API to refer to two binary tree implementations available
to device driver writers (and the kernel itself). The first type is a Splay Tree implementation, referred to
as simply Generic Tables. The second implementation is using AVL trees, referred to as AVL tables.

Splay trees are binary search trees where frequently used items move closer to the root and thus are
faster to access. On the downside, the tree is not self-balancing in the sense that it can have any depth.
AVL trees (named afterGeorgy Adelson-Velsky and Evgenii Landis) are self-balancing binary search trees
trees, keeping their depth logarithmic on the number of items (in base 2). They are similar to red-black
trees, but are faster in retrieval. You can find more information online.

Both implementations have an almost identical API. We’ll start with Splay trees, and then look at the
differences compared to AVL trees.

Splay Trees

The most common functions related to generic tables are shown in table 11-1.

Table 11-1: Common functions for working with generic tables

Function Description

RtlInitializeGenericTable Initialize a new generic table

RtlInsertElementGenericTable Insert a new item into the table

RtlLookupElementGenericTable Lookup an item by key (logarithmic)

RtlNumberGenericTableElements Return the number of items in the table

RtlGetElementGenericTable Return an item by index

RtlDeleteElementGenericTable Delete an item from the table

RtlEnumerateGenericTable Enumerate the items in the table

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 352

It’s important to note that the tables API provide no inherent synchronization. It’s the job of the driver to
make sure thread/CPU safety exists. You can use any appropriate synchronization primitive we looked at,
such as a (fast) mutex, Executive Resource, or spin lock.

The first step when using a generic table is to initialize it by calling RtlInitializeGenericTable:

VOID RtlInitializeGenericTable (

Out PRTL_GENERIC_TABLE Table,

In PRTL_GENERIC_COMPARE_ROUTINE CompareRoutine,

In PRTL_GENERIC_ALLOCATE_ROUTINE AllocateRoutine,

In PRTL_GENERIC_FREE_ROUTINE FreeRoutine,

_In_opt_ PVOID TableContext);

A generic table is managed by an RTL_GENERIC_TABLE structure, that although provided in the headers,
should be treated as opaque. A driver allocates such a structure and calls the initializationAPI. The function
requires three callbacks to be specified (all of which are mandatory).

CompareRoutine is a function that should tell which element is greater (or equal) given two elements. This
is the basis of any binary search tree implementation. The routine must have the following prototype:

typedef enum _RTL_GENERIC_COMPARE_RESULTS {

GenericLessThan,

GenericGreaterThan,

GenericEqual

} RTL_GENERIC_COMPARE_RESULTS;

RTL_GENERIC_COMPARE_RESULTS CompareFunction (

In struct _RTL_GENERIC_TABLE *Table,

In PVOID FirstStruct,

In PVOID SecondStruct);

The returned value is a simple enumeration. The provided arguments should be cast to the actual data
stored in the table and compared using some key present in that data. The returned valuemust be consistent
- using the key for comparison in a consistent way - otherwise the table APIs cannot work as expected.

The AllocateRoutine and FreeRoutine are needed to implement the method of allocating and freeing
memory for the nodes managed by the table. These include the data item itself the driver wishes to store
and any other metadata required by the table implementation. Here are the prototypes:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 353

PVOID AllocateFunction (

In struct _RTL_GENERIC_TABLE *Table,

In CLONG ByteSize);

VOID FreeFunction (

In struct _RTL_GENERIC_TABLE *Table,

In PVOID Buffer);

The byte size provided to the allocation function is properly calculated to include any metadata required
by the tables API. As we’ll soon see, the insert API specifies the driver’s data size and automatically adds
the required overhead before calling the allocation function.

As for the implementation itself - you can use anymemoryAPIs discussed, such as ExAllocatePoolWithTag,
ExAllocatePool2, or even lookaside lists. You can use the paged pool or non-paged pool, as needed. The
deallocation function must free the allocation appropriately.

Finally, the TableContext parameter allows adding some context pointer that may be useful for the driver.
It can be retrieved by accessing the TableContext member of RTL_GENERIC_TABLE. It’s also possible to
allocate a structure that starts with a RTL_GENERIC_TABLE member, and add driver-specific members, so
that access is possible by casting to the larger structure.

Although the RTL_GENERIC_TABLE is supposed to be opaque, there is no other way to get to
the table context except accessing the TableContext member directly.

Once the table is initialized, items can be inserted (based on a key) by calling RtlInsertElementGenericTable:

PVOID RtlInsertElementGenericTable (

In PRTL_GENERIC_TABLE Table,

_In_reads_bytes_(BufferSize) PVOID Buffer,

In CLONG BufferSize,

_Out_opt_ PBOOLEAN NewElement);

The provided Buffer should be the data to be placed in the table, which should contain the key to be
used for comparison. The function calls the compare function to figure out if the element already exists
in the table. If it does, its address is returned and no insertion takes place. If it doesn’t exist, it’s inserted
by copying the provided buffer to the “real” buffer allocated (by calling the registered allocation routine).
BufferSize should specify the number of bytes in the data structure to copy. The returned pointer in this
case is the address of the stored object within the table.

For example, suppose the driver wants to keep some data on a per-process basis, keyed by the process ID.
The data structure could look something like the following (full example is shown in the next section):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 354

struct ProcessData {

ULONG Id; // serves as the key

// data to be tracked per process...

};

Inserting an item would be done with the following code:

void AddProcessData(ULONG pid) {

ProcessData data;

data.Id = pid;

// fill more members...

PVOID item = RtlInsertElementGenericTable(&g_table,

&data, sizeof(data), nullptr);

}

There is no need to store the returned pointer - the driver can get it later by performing a lookup. Notice
that the provided data is on the stack - it doesn’t matter, as it’s copied to the dynamically-allocated buffer
anyway.

The final optional parameter to RtlInsertElementGenericTable (NewElement) returns if a new item
was inserted (TRUE) or the item was already in the table (FALSE).

Retrieving an item based on the key is accomplished with RtlLookupElementGenericTable:

PVOID RtlLookupElementGenericTable (

In PRTL_GENERIC_TABLE Table,

In PVOID Buffer);

The provided Buffer should be the key data that will be used by the called compare routine. It doesn’t have
to include a full blown item if the key members are first in the data structure. In the previous example, pro-
viding a simple ULONG is enough, as it’s the first member of ProcessData. RtlLookupElementGenericTable
returns the pointer to the data within the table, or NULL if the item cannot be located.

The table API provides an additional way to retrieve items - by index:

PVOID RtlGetElementGenericTable(

In PRTL_GENERIC_TABLE Table,

In ULONG Index);

This is sometimes useful for enumeration purposes, although the order is not generally predictable. You
can get the number of items in the table with the simple RtlNumberGenericTableElements. To get a
predictable enumeration (ordered by key), you can call RtlEnumerateGenericTable:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 355

PVOID RtlEnumerateGenericTable (

In PRTL_GENERIC_TABLE Table,

In BOOLEAN Restart);

Set Restart to TRUE when initializing enumeration, and iterate until the returned pointer is NULL. Here is
an example:

for (PVOID ptr = RtlEnumerateGenericTable(Table, TRUE);

ptr;

ptr = RtlEnumerateGenericTable(Table, FALSE)) {

// process ptr

}

RtlEnumerateGenericTable flattens the tree into a linked list and provides the items as required. A
similar API, RtlEnumerateGenericTableWithoutSplaying will not perturb the splay links.

Finally, to delete an item from the table, call RtlDeleteElementGenericTable:

BOOLEAN RtlDeleteElementGenericTable (

In PRTL_GENERIC_TABLE Table,

In PVOID Buffer);

The function returns TRUE if the item was found and was deleted, FALSE otherwise. You must be careful
to delete all items from the table before the driver unloads, or the memory used by remaining items will
leak. You can use the following loop to delete all items properly:

PVOID element;

while ((element = RtlGetElementGenericTable(&table, 0)) != nullptr) {

RtlDeleteElementGenericTable(&table, element);

}

Write a RAII wrapper for generic tables. Use C++ templates if you can.

Tables Sample Driver

The Tables driver example shows a usage for the common generic table APIs. The driver tracks Registry
access and counts certain Registry operations on a per-process basis.

The header file TablesPublic.h contains definitions for control codes and the data structure tracked per
process (which is also returned to user mode upon request):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 356

#define TABLES_DEVICE 0x8003

#define IOCTL_TABLES_GET_PROCESS_COUNT \

CTL_CODE(TABLES_DEVICE, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_TABLES_GET_PROCESS_BY_ID \

CTL_CODE(TABLES_DEVICE, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_TABLES_GET_PROCESS_BY_INDEX \

CTL_CODE(TABLES_DEVICE, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_TABLES_DELETE_ALL \

CTL_CODE(TABLES_DEVICE, 0x803, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_TABLES_START \

CTL_CODE(TABLES_DEVICE, 0x804, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_TABLES_STOP \

CTL_CODE(TABLES_DEVICE, 0x805, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_TABLES_GET_ALL \

CTL_CODE(TABLES_DEVICE, 0x806, METHOD_OUT_DIRECT, FILE_ANY_ACCESS)

struct ProcessData {

ULONG Id;

LONG64 RegistrySetValueOperations;

LONG64 RegistryCreateKeyOperations;

LONG64 RegistryRenameOperations;

LONG64 RegistryDeleteOperations;

};

Every time a process makes one of these operation, the relevant counter is incremented. A generic table is
used to quickly lookup a process making a Registry operation based on the process’ ID.

The process generic table and other data is stored in the following structure (in Tables.h):

struct Globals {

void Init();

RTL_GENERIC_TABLE ProcessTable;

FastMutex Lock;

LARGE_INTEGER RegCookie;

};

A global instance is created in Tables.cpp. Init is used to initialize the fast mutex (a RAII wrapper similar
to the one we saw in chapter 6) and the table itself:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 357

#define DRIVER_PREFIX "Tables: "

#define DRIVER_TAG 'lbaT'

Globals g_Globals;

void Globals::Init() {

Lock.Init();

RtlInitializeGenericTable(&ProcessTable,

CompareProcesses, AllocateProcess, FreeProcess, nullptr);

}

extern Globals g_Globals;

CompareProcesses uses the process ID for comparison:

RTL_GENERIC_COMPARE_RESULTS

CompareProcesses(PRTL_GENERIC_TABLE, PVOID first, PVOID second) {

auto p1 = (ProcessData*)first;

auto p2 = (ProcessData*)second;

if (p1->Id == p2->Id)

return GenericEqual;

return p1->Id > p2->Id ? GenericGreaterThan : GenericLessThan;

}

Allocation and deallocation are performed in a straightforward manner with ExAllocatePool2 and
ExFreePool:

PVOID AllocateProcess(PRTL_GENERIC_TABLE, CLONG bytes) {

return ExAllocatePool2(POOL_FLAG_PAGED | POOL_FLAG_UNINITIALIZED,

bytes, DRIVER_TAG);

}

void FreeProcess(PRTL_GENERIC_TABLE, PVOID buffer) {

ExFreePool(buffer);

}

POOL_FLAG_UNINITIALIZED is used to skip zeroing out the structure, as the table API will copy the
provided data anyway.

DriverEntry is fairly standard, with two additions. One is a Registry notification callback for tracking
Registry operations. The other is a process notification callback, so that when a process exits, the stats kept

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 358

for the process are removed from the generic table. This is partly because process IDs may be reused and
that would track multiple processes that happen to have the same ID with the same data structure.

If you would want to track all processes without losing stats, it’s possible to use a combination
of the process ID and its creation time as a unique key. Another option for a unique key is a
process key available with PsGetProcessStartKey (from Windows 10 version 1703). Another
idea would be to push dead processes to a separate list.

Here is the complete DriverEntry:

extern "C"

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

NTSTATUS status;

PDEVICE_OBJECT devObj = nullptr;

UNICODE_STRING link = RTL_CONSTANT_STRING(L"\\??\\Tables");

bool symLinkCreated = false, procRegistered = false;

do {

UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Device\\Tables");

status = IoCreateDevice(DriverObject, 0, &name, FILE_DEVICE_UNKNOWN,

0, FALSE, &devObj);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX

"Failed in IoCreateDevice (0x%X)\n", status));

break;

}

status = IoCreateSymbolicLink(&link, &name);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX

"Failed in IoCreateSymbolicLink (0x%X)\n", status));

break;

}

symLinkCreated = true;

g_Globals.Init();

//

// set process notification routine

//

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);

if (!NT_SUCCESS(status))

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 359

procRegistered = true;

//

// Registry notitications

//

UNICODE_STRING altitude = RTL_CONSTANT_STRING(L"123456.789");

status = CmRegisterCallbackEx(OnRegistryNotify,

&altitude, DriverObject, nullptr,

&g_Globals.RegCookie, nullptr);

} while (false);

if (!NT_SUCCESS(status)) {

if (procRegistered)

PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

if (!symLinkCreated)

IoDeleteSymbolicLink(&link);

if (devObj)

IoDeleteDevice(devObj);

return status;

}

DriverObject->DriverUnload = TablesUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = TablesCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = TablesDeviceControl;

return status;

}

The Registry notification callback first tests for the interesting operations:

NTSTATUS OnRegistryNotify(PVOID, PVOID Argument1, PVOID Argument2) {

UNREFERENCED_PARAMETER(Argument2);

auto type = (REG_NOTIFY_CLASS)(ULONG_PTR)Argument1;

switch (type) {

case RegNtPostSetValueKey:

case RegNtPostCreateKey:

case RegNtPostCreateKeyEx:

case RegNtPostRenameKey:

case RegNtPostDeleteValueKey:

case RegNtPostDeleteKey:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 360

At this point it’s time to look for the current process in the generic table. If it’s not there, then an entry
needs to be created:

PVOID buffer;

auto pid = HandleToULong(PsGetCurrentProcessId());

{

Locker locker(g_Globals.Lock);

buffer = RtlLookupElementGenericTable(&g_Globals.ProcessTable, &pid);

if (buffer == nullptr) {

//

// process does not exist, create a new entry

//

ProcessData data{};

data.Id = pid;

buffer = RtlInsertElementGenericTable(&g_Globals.ProcessTable,

&data, sizeof(data), nullptr);

if (buffer) {

KdPrint((DRIVER_PREFIX

"Added process %u from Registry callback\n", pid));

}

}

}

The Locker class is the same one we used in chapter 6 - acquiring the lock (fast mutex in this case) in the
constructor and releasing in the destructor. Once the fastmutex is acquired, RtlLookupElementGenericTable
is called to look for the process ID. If not found (NULL returned), RtlInsertElementGenericTable is
called to insert a new item. Technically, it’s possible to just call RtlInsertElementGenericTablewithout
doing a lookup first, as it would return the existing pointer if the item to insrt already exists. Note that
data is zeroed out before the ID is set, so that copying the data to the table would start all counters at
zero.

The artificial scope is there to minimize the locking scope.

The next step is to increment the relevant counter:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 361

if (buffer) {

auto data = (ProcessData*)buffer;

switch (type) {

case RegNtPostSetValueKey:

InterlockedIncrement64(&data->RegistrySetValueOperations);

break;

case RegNtPostCreateKey:

case RegNtPostCreateKeyEx:

InterlockedIncrement64(&data->RegistryCreateKeyOperations);

break;

case RegNtPostRenameKey:

InterlockedIncrement64(&data->RegistryRenameOperations);

break;

case RegNtPostDeleteKey:

case RegNtPostDeleteValueKey:

InterlockedIncrement64(&data->RegistryDeleteOperations);

break;

}

}

The process notify callback should remove a dead process data structure:

void OnProcessNotify(PEPROCESS, HANDLE pid, PPS_CREATE_NOTIFY_INFO createInfo) {

if(!createInfo) {

//

// process dead, remove from table

//

Locker locker(g_Globals.Lock);

ProcessData data;

data.Id = HandleToULong(pid);

auto deleted = RtlDeleteElementGenericTable(

&g_Globals.ProcessTable, &data);

if (!deleted) {

KdPrint((DRIVER_PREFIX

"Failed to delete process with ID %u\n", data.Id));

}

}

}

Deleting could fail if the driver started after the process in question was already running. Note that there
is no need to create a new item if a process is created - if the process does not perform the tracked Registry
operations no item should be added as an optimization.

The IRP_MJ_DEVICE_CONTROL handler handles all client requests. It starts with the “usual” code:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 362

NTSTATUS TablesDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

auto len = 0U;

switch (dic.IoControlCode) {

After the switch, the IRP is completed with the status and len:

return CompleteRequest(Irp, status, len);

The CompleteRequest helper function is the same as used in chapter 8 (and others), completing the IRP
with whatever status and information provided.

Here is the case for getting the number of elements (processes) being tracked:

case IOCTL_TABLES_GET_PROCESS_COUNT:

{

if (dic.OutputBufferLength < sizeof(ULONG)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

Locker locker(g_Globals.Lock);

(ULONG)Irp->AssociatedIrp.SystemBuffer =

RtlNumberGenericTableElements(&g_Globals.ProcessTable);

len = sizeof(ULONG);

status = STATUS_SUCCESS;

}

break;

The NULL check for the system buffer is missing in the above snippet.

Getting a process’ data by ID requires lookup:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 363

case IOCTL_TABLES_GET_PROCESS_BY_ID:

{

if (dic.OutputBufferLength < sizeof(ProcessData) ||

dic.InputBufferLength < sizeof(ULONG)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

ULONG pid = *(ULONG*)Irp->AssociatedIrp.SystemBuffer;

Locker locker(g_Globals.Lock);

auto data = (ProcessData*)RtlLookupElementGenericTable(

&g_Globals.ProcessTable, &pid);

if (data == nullptr) {

//

// invalid or non-tracked PID

//

status = STATUS_INVALID_CID;

break;

}

memcpy(Irp->AssociatedIrp.SystemBuffer, data, len = sizeof(ProcessData));

status = STATUS_SUCCESS;

}

break;

Getting all process information is a bit tricky, as we need to make sure not to overflow the user’s buffer:

case IOCTL_TABLES_GET_ALL:

{

if (dic.OutputBufferLength < sizeof(ProcessData)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

}

Locker locker(g_Globals.Lock);

auto count = RtlNumberGenericTableElements(&g_Globals.ProcessTable);

if (count == 0) {

status = STATUS_NO_DATA_DETECTED;

break;

}

NT_ASSERT(Irp->MdlAddress);

count = min(count, dic.OutputBufferLength / sizeof(ProcessData));

auto buffer = (ProcessData*)MmGetSystemAddressForMdlSafe(

Irp->MdlAddress, NormalPagePriority);

if (buffer == nullptr) {

status = STATUS_INSUFFICIENT_RESOURCES;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 364

break;

}

for (ULONG i = 0; i < count; i++) {

auto data = (ProcessData*)RtlGetElementGenericTable(

&g_Globals.ProcessTable, i);

NT_ASSERT(data);

memcpy(buffer, data, sizeof(ProcessData));

buffer++;

}

len = count * sizeof(ProcessData);

status = STATUS_SUCCESS;

}

break;

Here is where RtlGetElementGenericTable comes in handy. The code fills the user’s buffer with as many
ProcessData structures that would fit or all that exist if everything fits.

To delete all items (IOCTL_TABLES_DELETE_ALL), which is also needed in the Unload routine, DeleteAllProcesses
is called:

void DeleteAllProcesses() {

Locker locker(g_Globals.Lock);

//

// deallocate all objects still stored in the table

//

PVOID p;

auto t = &g_Globals.ProcessTable;

while ((p = RtlGetElementGenericTable(t, 0)) != nullptr) {

RtlDeleteElementGenericTable(t, p);

}

}

Finally, the Unload routine cleans everything up:

void TablesUnload(PDRIVER_OBJECT DriverObject) {

CmUnRegisterCallback(g_Globals.RegCookie);

PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

DeleteAllProcesses();

UNICODE_STRING link = RTL_CONSTANT_STRING(L"\\??\\Tables");

IoDeleteSymbolicLink(&link);

IoDeleteDevice(DriverObject->DeviceObject);

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 365

See the full source code in the Tables project.

Testing the Tables Driver

The client application TablesTest uses command line arguments to work with the driver. Here is the
complete main function:

int main(int argc, const char* argv[]) {

enum class Command {

GetProcessCount,

DeleteAll,

GetProcessById,

GetProcessByIndex,

GetAllProcesses,

Start,

Stop,

Error = 99,

};

auto cmd = Command::GetProcessCount;

int pid = 0;

if (argc > 1) {

if (_stricmp(argv[1], "help") == 0)

return PrintUsage();

if (_stricmp(argv[1], "delete") == 0)

cmd = Command::DeleteAll;

else if (_stricmp(argv[1], "count") == 0)

cmd = Command::GetProcessCount;

else if (_stricmp(argv[1], "start") == 0)

cmd = Command::Start;

else if (_stricmp(argv[1], "getall") == 0)

cmd = Command::GetAllProcesses;

else if (_stricmp(argv[1], "stop") == 0)

cmd = Command::Stop;

else if (_stricmp(argv[1], "get") == 0) {

if (argc > 2) {

pid = atoi(argv[2]);

cmd = Command::GetProcessById;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 366

}

else {

printf("Missing process ID\n");

return 1;

}

}

else if (_stricmp(argv[1], "geti") == 0) {

if (argc > 2) {

pid = atoi(argv[2]);

cmd = Command::GetProcessByIndex;

}

else {

printf("Missing index\n");

return 1;

}

}

else

cmd = Command::Error;

}

if (cmd == Command::Error) {

printf("Command error.\n");

return PrintUsage();

}

auto hDevice = CreateFile(L"\\\\.\\Tables",

GENERIC_READ | GENERIC_WRITE, 0, nullptr,

OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {

printf("Error opening device (%u)\n", GetLastError());

return 1;

}

DWORD bytes;

BOOL success = FALSE;

switch (cmd) {

case Command::GetProcessCount:

{

DWORD count;

success = DeviceIoControl(hDevice,

IOCTL_TABLES_GET_PROCESS_COUNT, nullptr, 0,

&count, sizeof(count), &bytes, nullptr);

if (success) {

printf("Process count: %u\n", count);

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 367

break;

}

case Command::GetAllProcesses:

{

DWORD count = 0;

success = DeviceIoControl(hDevice,

IOCTL_TABLES_GET_PROCESS_COUNT, nullptr, 0,

&count, sizeof(count), &bytes, nullptr);

if (count) {

count += 10; // in case more processes created

auto data = std::make_unique<ProcessData[]>(count);

success = DeviceIoControl(hDevice,

IOCTL_TABLES_GET_ALL, nullptr, 0,

data.get(), count * sizeof(ProcessData), &bytes, nullptr);

if (success) {

count = bytes / sizeof(ProcessData);

printf("Returned %u processes\n", count);

for (DWORD i = 0; i < count; i++)

DisplayProcessData(data[i]);

}

}

break;

}

case Command::DeleteAll:

success = DeviceIoControl(hDevice, IOCTL_TABLES_DELETE_ALL,

nullptr, 0, nullptr, 0, &bytes, nullptr);

if (success)

printf("Deleted successfully.\n");

break;

case Command::GetProcessById:

case Command::GetProcessByIndex:

{

ProcessData data;

success = DeviceIoControl(hDevice,

cmd == Command::GetProcessById ?

IOCTL_TABLES_GET_PROCESS_BY_ID :

IOCTL_TABLES_GET_PROCESS_BY_INDEX,

&pid, sizeof(pid), &data, sizeof(data), &bytes, nullptr);

if (success) {

DisplayProcessData(data);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 368

}

break;

}

}

if (!success) {

printf("Error (%u)\n", GetLastError());

}

CloseHandle(hDevice);

return 0;

}

DisplayProcessData shows the counters:

void DisplayProcessData(ProcessData const& data) {

printf("PID: %u\n", data.Id);

printf("Registry set Value: %lld\n", data.RegistrySetValueOperations);

printf("Registry delete: %lld\n", data.RegistryDeleteOperations);

printf("Registry create key: %lld\n", data.RegistryCreateKeyOperations);

printf("Registry rename: %lld\n", data.RegistryRenameOperations);

}

1. Add support for system-wide statistics for the implemented operations. Add control
codes to retrieve them from user mode.

2. Save deleted processes stats in a list (so they don’t get lost once a process is terminated),
and provide this list to the client if requested.

3. Implement the start and stop control codes to allow pausing and resuming counting
operations.

AVL Trees

The API for using AVL trees is virtually identical to the splay trees API with the addition of the suffix “Avl”
to function names, such as RtlInitializeGenericTableAvl. In the AVL tree case, a different structure,
RTL_AVL_TABLE, is used to manage the tree.

You may want to experience with both implementations and decide based on performance measurements
for your scenario that one implementation is better than the other. Fortunately, the kernel headers provide a
simpleway to switch toAVL treeswithout changing any code by defining themacro RTL_USE_AVL_TABLES
before including <ntddk.h>:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 369

#define RTL_USE_AVL_TABLES

#include <ntddk.h>

That’s it! All calls to the Splay trees functions are redirected (the functions become macros) to the AVL
tree implementation.

Try it out with the Tables driver.

Hash Tables

The Splay trees and AVL trees discussed are implemented as binary search trees. Another common way to
perform quick lookup is by using hash tables. Hash tables are based around a hash function that, if properly
implemented, provides a good distribution of values across keys - no greater/less than comparison required.

The WDK documentation does not document any hash functions, but the kernel API supports a hash table
implementation. The functions are declared in <ntddk.h>, but are undocumented. As such, they are not de-
scribed in this book. Feel free to investigate their usage, startingwith the function RtlInitHashTableContext.

Singly Linked Lists

Wehave seen numerous times the use of doubly-linked lists, based on the LIST_ENTRY structure. The kernel
API also supports singly-linked lists, where the full functionality of a doubly-linked list is not required.
The structure to use is SINGLE_LIST_ENTRY defined like so:

typedef struct _SINGLE_LIST_ENTRY {

struct _SINGLE_LIST_ENTRY *Next;

} SINGLE_LIST_ENTRY, *PSINGLE_LIST_ENTRY;

This is as simple as a linked list can possibly get. Just as with doubly-linked lists, one of these is defined as
the header of the list (Next is initialized to NULL), and the same structure is embedded in a larger structure
where the real data is. For example:

struct MyData {

ULONGLONG Time;

ULONG ProcessId;

SINGLE_LIST_ENTRY Link;

ULONG ExitCode;

};

Since it’s a singly-linked list, you can only add a new head and remove the current head (both implemented
inline within ntdef.h):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 370

VOID PushEntryList(

Inout PSINGLE_LIST_ENTRY ListHead,

Inout __drv_aliasesMem PSINGLE_LIST_ENTRY Entry);

PSINGLE_LIST_ENTRY PopEntryList(_Inout_ PSINGLE_LIST_ENTRY ListHead);

Just like doubly-linked lists, the CONTAINING_RECORDmacro can be used to get to the “real” data given the
pointer to SINGLE_LIST_ENTRY, the full structure type, and the name of the SINGLE_LIST_ENTRYmember
within the larger structure.

The afformentioned functions are not thread/CPU safe, so must be properly protected if appropriate. That
said, APIs are provided for thread/CPU safe pushing and popping using a spin lock only:

PSINGLE_LIST_ENTRY ExInterlockedPopEntryList (

Inout PSINGLE_LIST_ENTRY ListHead,

Inout _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

PSINGLE_LIST_ENTRY ExInterlockedPushEntryList (

Inout PSINGLE_LIST_ENTRY ListHead,

Inout __drv_aliasesMem PSINGLE_LIST_ENTRY ListEntry,

Inout _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

The spin lock is acquired at IRQL HIGH_LEVEL, which makes it easy to use from any IRQL.

Sequenced Singly-Linked Lists

There is yet another implementation of atomic singly linked lists provided by the kernel. These use Lock
Free techniques, which are more efficient than using a spin lock.

The basis of these lists is a header described by a SLIST_HEADER, which should be treated as opaque. The
driver initializes the header with InitializeSListHead (or ExInitializeSListHead which is the same
thing):

VOID InitializeSListHead (_Out_ PSLIST_HEADER SListHead);

To add an item, use an SLIST_ENTRY object (usually part of a bigger structure) by passing it to
ExInterlockedPushEntrySList macro:

PSLIST_ENTRY ExInterlockedPushEntrySList (

Inout PSLIST_HEADER ListHead,

Inout __drv_aliasesMem PSLIST_ENTRY ListEntry,

_Inout_opt_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

The spin lock should be passed as NULL, as thismacro expands to calling ExpInterlockedPushEntrySList:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 371

PSLIST_ENTRY ExpInterlockedPushEntrySList (

Inout PSLIST_HEADER ListHead,

Inout __drv_aliasesMem PSLIST_ENTRY ListEntry);

As you can see, the spin lock is not used at all. It’s not quite clear why the macro accepts a spin lock, but the
documentation hints that this is only useful with doubly-linked lists, so the macro prototype is probably
for consistency only.

Similarly, popping an item (from the head only) is available with ExInterlockedPopEntrySList:

PSLIST_ENTRY ExInterlockedPopEntrySList (

Inout PSLIST_HEADER ListHead,

_Inout_opt_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

Again, the spin lock is not needed.

To clean the list entirely, call ExInterlockedFlushSList:

PSLIST_ENTRY ExInterlockedFlushSList (_Inout_ PSLIST_HEADER ListHead);

The function simply replaces (atomically) the head with NULL (making the list empty), and returns the
previous head. It’s the reponsibility of the driver to iterate through the list and free items that were
dynamically allocated explictly.

Finally, you can call ExQueryDepthSList to get the number of items in the list:

USHORT ExQueryDepthSList (_In_ PSLIST_HEADER SListHead);

It’s a fast operation, as the count is stored as part of SLIST_HEAD.

Callback Objects

The kernel defines a Callback object type that can be used to provide notifications, while maintaining a
higher level of abstraction, where the callback object hides the callback(s) that should be invoked. There
are quite a few callback objects used on a normal system, which can be viewed with Sysinternals WinObj
tool (figure 11-1).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 372

Figure 11-1: Callback objects

There are three existing (and documented) callback objects that drivers can use (all in the \Callback object
manager directory):

• ProcessorAdd - callback invoked when a processor is hot-added to the system.
• PowerState - callback invoked when one of the following occurs: the system is about to go to a low
power state, the system switches from AC to DC (or back), or the system power policy changes as
a result of a user’s or application’s request.

• SetSystemTime - callback invoked when the system time is changed.

Working with an existing callback object, or when creating one is essentially the same. The first step
is to create the callback object with ExCreateCallback, giving it a name with the provided OBJECT_-
ATTRIBUTES:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 373

NTSTATUS ExCreateCallback (

Outptr PCALLBACK_OBJECT *CallbackObject,

In POBJECT_ATTRIBUTES ObjectAttributes,

In BOOLEAN Create,

In BOOLEAN AllowMultipleCallbacks);

The OBJECT_ATTRIBUTES structure must be initialized with a name, and optionally other attributes, the
most common being OBJ_CASE_INSENSITIVE. Set Create to TRUE to create a new callback object if such
does not exist. If a new callback object is created, AllowMultipleCallbacks specifies whether multiple
callbacks are allowed. If Create is FALSE or the object exists, this parameter is ignored. The returned
object’s (CallbackObject) reference count is incremented.

With a callback object in hand, an interested client can register a callback functionwithExRegisterCallback:

PVOID ExRegisterCallback (

Inout PCALLBACK_OBJECT CallbackObject,

In PCALLBACK_FUNCTION CallbackFunction,

_In_opt_ PVOID CallbackContext);

The function returns a registration cookie to be used to unregister with ExUnregisterCallback.
The callback function itself must have the following prototype:

VOID CallbackFunction (

_In_opt_ PVOID CallbackContext,

_In_opt_ PVOID Argument1,

_In_opt_ PVOID Argument2);

CallbackContext is whatever was passed in to ExRegisterCallback, and the two arguments are pro-
vided by whoever is invoking the callbacks - these can be anything, as determined by the invoker.

When using existing callback objects, that’s all there is to it. If you are controlling the callback object, then
you can invoke the callbacks that are currently registered with ExNotifyCallback:

VOID ExNotifyCallback (

In PVOID CallbackObject,

_In_opt_ PVOID Argument1,

_In_opt_ PVOID Argument2);

Finally, to unregister your callback (if you’re a client), call ExUnregisterCallback, passing the registra-
tion cookie:

void ExUnregisterCallback (_Inout_ PVOID CallbackRegistration);

Youmust also decrement the reference count of the callback object with ObDereferenceObject, otherwise
the callback object will leak. You can do that for the existing callback objects as soon as you don’t need
them.

The Callbacks driver demonstrates using a callback object with the SetSystemTime documented callback.
Here is the entire driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 374

void SystemTimeChanged(PVOID context, PVOID arg1, PVOID arg2);

void OnUnload(PDRIVER_OBJECT);

PVOID g_RegCookie;

extern "C" NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

OBJECT_ATTRIBUTES attr;

UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Callback\\SetSystemTime");

InitializeObjectAttributes(&attr, &name,

OBJ_CASE_INSENSITIVE, nullptr, nullptr);

PCALLBACK_OBJECT callback;

//

// open the callback object

//

auto status = ExCreateCallback(&callback, &attr, FALSE, TRUE);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to create callback object (0x%X)\n", status));

return status;

}

//

// register our callback

//

g_RegCookie = ExRegisterCallback(callback, SystemTimeChanged, nullptr);

if (g_RegCookie == nullptr) {

ObDereferenceObject(callback);

KdPrint(("Failed to register callback\n"));

return STATUS_UNSUCCESSFUL;

}

//

// callback object no longer needed

//

ObDereferenceObject(callback);

DriverObject->DriverUnload = OnUnload;

return STATUS_SUCCESS;

}

void SystemTimeChanged(PVOID context, PVOID arg1, PVOID arg2) {

UNREFERENCED_PARAMETER(context);

//

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 11: Advanced Programming Techniques (Part 2) 375

// system time changed!

// (arg1 and arg2 are always zero with this object)

//

DbgPrint("System time changed 0x%p 0x%p!\n", arg1, arg2);

}

void OnUnload(PDRIVER_OBJECT) {

ExUnregisterCallback(g_RegCookie);

}

In this chapter we’ve looked at some potentially useful techniques a driver might want to use. In the next
chapter, we’ll turn our attention to file system mini-filters.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters
File systems are targets for I/O operations to access files and other devices implemented as file systems
(such as named pipes and mailslots). Windows supports several file systems, most notably NTFS, its native
file system. File system filtering is the mechanism by which drivers can intercept calls destined to file
systems. This is useful for many types of software, such as anti-viruses, backups, encryption, redirection,
and more.

Windows supported for a long time a filtering model known as file system filters, which is now referred
to as legacy file system filters. A newer model called file system mini-filters was developed to replace the
legacy filter mechanism. Mini-filters are easier to write in many respects, and are the preferred way to
develop file system filtering drivers. In this chapter we’ll cover the basics of file system mini-filters.

This is a long chapter, so you may want to consume it in chunks. The exmaple drivers get more complex
as the chapter progresses.

In this chapter:

• Introduction
• Loading and Unloading
• Initialization
• Installation
• Processing I/O Operations
• File Names
• The Delete Protector Driver
• The Directory Hiding Driver
• Contexts
• Initiating I/O Requests
• The File Backup Driver
• User Mode Communication
• Debugging
• Exercises

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 377

Introduction

Legacy file system filters are notoriously difficult to write. The driver writer has to take care of an as-
sortment of little details, many of them boilerplate, complicating development. Legacy filters cannot be
unloaded while the system is running which means the system had to be restarted to load an updated
version of the driver. With the mini-filter model, drivers can be loaded and unloaded dynamically, thus
streamlining the development workflow considerably.

Internally, a legacy filter provided by Windows called the Filter Manager is tasked with managing mini-
filters. A typical filter layering is shown in figure 12-1.

Figure 12-1: Mini-filters managed by the filter manager

Each mini-filter has its own Altitude, which determines its relative position in the device stack. The filter
manager is the one receiving the IRPs just like any other legacy filter and then calls upon the mini-filters
it’s managing, in descending order of altitude.

In some unusual cases, there may be another legacy filter in the hierarchy, that may cause a mini-filter
“split”, where some are higher in altitude than the legacy filter and some lower. In such a case, more than
one instance of the filter manager will load, each managing its own mini-filters. Every such filter manager
instance is referred to as a Frame. Figure 12-2 shows such an example with two frames.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 378

Figure 12-2: Mini-filters in two filter manager frames

Loading and Unloading

Mini-filter drivers must be loaded just like any other driver. The user mode API to use is FilterLoad,
passing the driver’s name (its key in the registry atHKLM\System\CurrentControlSet\Services\drivername).
Internally, the kernel FltLoadFilter API is invoked, with the same semantics. Just like any other driver,
the SeLoadDriverPrivilege privilege must be present (and enabled) in the caller’s token if called from user
mode. By default, it’s present in admin-level tokens, but not in standard users tokens.

Loading a mini-filter driver is equivalent to loading a standard software driver. Unloading, however, is
not.

Unloading a mini-filter is accomplished with the FilterUnload API in user mode, or FltUnloadFilter
in kernel mode. This operation requires the same privilege as for loads, but is not guaranteed to succeed,
because the mini-filter’s Filter unload callback (discussed later) is called, which can fail the request so that
driver remains loaded.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 379

Although using APIs to load and unload filters has its uses, during development it’s usually easier to use
a built-in tool that can accomplish that (and more) called fltmc.exe (residing in the System32 directory).
Invoking it (from an elevated command window) without arguments lists the currently loaded mini-filters.
Here is the output from a Windows 11 machine:

C:\WINDOWS\system32>fltmc

Filter Name Num Instances Altitude Frame

------------------------------ ------------- ------------ -----

bindflt 1 409800 0

wtd 5 385110 0

WdFilter 5 328010 0

storqosflt 0 244000 0

wcifs 0 189900 0

PrjFlt 0 189800 0

CldFlt 1 180451 0

bfs 7 150000 0

FileCrypt 0 141100 0

luafv 1 135000 0

npsvctrig 1 46000 0

Wof 3 40700 0

FileInfo 5 40500 0

WinSetupMon 2 40300 0

For each filter, the output shows the driver’s name, the number of instances each filter has currently
running (each instance is attached to a volume), its altitude and the filter manager frame it’s part of.

You may be wondering why there are drivers with different number of instances. The short answer is that
it’s up to the driver to decide whether to attach to a given volume or not (we’ll look at this in more detail
later in this chapter).

Loading a driver with fltmc.exe is done with the load option, like so:

fltmc load myfilter

Conversely, unloading is done with the unload command line option:

fltmc unload myfilter

fltmc includes other options. Type fltmc -? to get the full list. For example, you can get the details of
all instances for each driver using fltmc instances. Similarly, you can get a list of all volumes mounted
on a system with fltmc volumes. We’ll see later in this chapter how this information is conveyed to the
driver.

File system drivers and filters are created in the FileSystem directory of the Object Manager namespace.
Figure 12-3 shows this directory inWinObj.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 380

Figure 12-3: File system drivers, filters and mini-filters in WinObj

Initialization

A file system mini-filter driver has a DriverEntry routine, just like any other driver. The driver must
register itself as a mini-filter with the filter manager, specifying various settings, such as what operations it
wishes to intercept. The driver sets up appropriate structures and then calls FltRegisterFilter to register.
If successful, the driver can do further initializations as needed and finally call FltStartFiltering to
actually start filtering operations.
Note that the driver does not need to set up dispatch routines on its own (IRP_MJ_READ, IRP_MJ_WRITE,
etc.). This is because the driver is not directly in the I/O path; the filter manager is.

FltRegisterFilter has the following prototype:

NTSTATUS FltRegisterFilter (

In PDRIVER_OBJECT Driver,

In const FLT_REGISTRATION *Registration,

Outptr PFLT_FILTER *RetFilte);

The required FLT_REGISTRATION structure provides all the necessary information for registration. It’s
defined like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 381

typedef struct _FLT_REGISTRATION {

USHORT Size;

USHORT Version;

FLT_REGISTRATION_FLAGS Flags;

const FLT_CONTEXT_REGISTRATION *ContextRegistration;

const FLT_OPERATION_REGISTRATION *OperationRegistration;

PFLT_FILTER_UNLOAD_CALLBACK FilterUnloadCallback;

PFLT_INSTANCE_SETUP_CALLBACK InstanceSetupCallback;

PFLT_INSTANCE_QUERY_TEARDOWN_CALLBACK InstanceQueryTeardownCallback;

PFLT_INSTANCE_TEARDOWN_CALLBACK InstanceTeardownStartCallback;

PFLT_INSTANCE_TEARDOWN_CALLBACK InstanceTeardownCompleteCallback;

PFLT_GENERATE_FILE_NAME GenerateFileNameCallback;

PFLT_NORMALIZE_NAME_COMPONENT NormalizeNameComponentCallback;

PFLT_NORMALIZE_CONTEXT_CLEANUP NormalizeContextCleanupCallback;

PFLT_TRANSACTION_NOTIFICATION_CALLBACK TransactionNotificationCallback;

PFLT_NORMALIZE_NAME_COMPONENT_EX NormalizeNameComponentExCallback;

#if FLT_MGR_WIN8

PFLT_SECTION_CONFLICT_NOTIFICATION_CALLBACK SectionNotificationCallback;

#endif

} FLT_REGISTRATION, *PFLT_REGISTRATION;

There is a lot of information encapsulated in this structure. The most important fields are described below:

• Size must be set to the size of the structure, which may depend on the target Windows version (set
in the project’s properties). Drivers typically just specify sizeof(FLT_REGISTRATION).

• Version is also based on the target Windows version. Drivers use FLT_REGISTRATION_VERSION.
• Flags can be zero or a combination of the following values:

– FLTFL_REGISTRATION_DO_NOT_SUPPORT_SERVICE_STOP - the driver does not support a stop
request, regardless of other settings.

– FLTFL_REGISTRATION_SUPPORT_NPFS_MSFS - the driver is aware of named pipes and mail-
slots and wishes to filter requests to these file systems as well (see the sidebar “Pipes and
Mailslots” for more information).

– FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME (Windows 10 version 1607 and later) - the driver
will support attaching to a Direct Access Volume (DAX), if such a volume is available (see the
sidebar “Direct Access Volume”).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 382

Pipes and Mailslots
A named pipe is a uni- or bi-directional communication mechanism from a server to one or more
clients, implemented as a file system (npfs.sys). The Windows API provides specific functions for
creating pipe servers. The CreateNamedPipe function can be used to create a named pipe server,
to which clients can connect using the normal CreateFile API with a “file name” in this form:
\\<server>\pipe\<pipename>.

Amailslot a a uni-directional communicationmechanism, implemented as a file system (msfs.sys), where
a server process opens a mailslot (you can think of it as a mailbox), to which messages can be sent by
clients. CreateMailslot is theWindows API to create amailslot, while clients connect with CreateFile
with a file name in the form \\<server>\mailslot\<mailslotname>.

For more information check out the Microsoft documentation or my book “Windows 10 System Program-
ming, Part 2”.

Direct Access Volume (DAX or DAS)
Direct access volumes is a relatively new capability added in Windows 10 version 1607 that provides
support for a new kind of storage based on direct access to the underlying byte data. This is supported
by new a type of storage hardware referred to as Storage Class Memory - a non-volatile storage medium
with RAM-like performance. (more information can be found on the web.)

• ContextRegistration - an optional pointer to FLT_CONTEXT_REGISTRATION structure array, where
each entry represents a context that driver may use in its work. Context refers to some driver-
defined data that can be attached to file system entities, such as files and volumes. We’ll look at
contexts later in this chapter. Some drivers don’t need any contexts, and can set this field to NULL.

• OperationRegistration - by far the most important field. This is a pointer to an array of FLT_-
OPERATION_REGISTRATION structures, each specifying the operation of interest and a pre and/or
post callback the driver wishes to be called upon. The next section provides the details.

• FilterUnloadCallback - specifies a function to be called when the driver is about to be unloaded. If
NULL is specified, the driver cannot be unloaded. If the driver sets a callback and returns a successful
status, the driver is unloaded; in that case the driver must call FltUnregisterFilter to unregister
itself before being unloaded. Returning a non-success status does not unload the driver.

• InstanceSetupCallback - this callback allows the driver to be notified when an instance is about to
be attached to a new volume. The driver may return STATUS_SUCCESS to attach or STATUS_FLT_-
DO_NOT_ATTACH if the driver does not wish to attach to this volume.

• InstanceQueryTeardownCallback - an optional callback invoked before detaching from a volume.
This can happen because of an explicit request to detach using FltDetachVolume in kernel mode
or FilterDetach in user mode. If NULL is specified by the callback, the detach operation is aborted.

• InstanceTeardownStartCallback - an optional callback invoked when teardown of an instance has
started. The driver should complete any pended operations so that instance teardown can complete.
Specifying NULL for this callback does not prevent instance teardown (prevention can be achieved
with the previous query teardown callback).

• InstanceTeardownCompleteCallback - an optional callback invoked after all the pending I/O opera-
tions complete or canceled.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 383

The rest of the callback fields are all optional and seldom used. These are beyond the scope of this book.

Operations Callback Registration

A mini-filter driver must indicate which operations it’s interested in. This is provided at mini-filter regis-
tration time with an array of FLT_OPERATION_REGISTRATION structures defined like so:

typedef struct _FLT_OPERATION_REGISTRATION {

UCHAR MajorFunction;

FLT_OPERATION_REGISTRATION_FLAGS Flags;

PFLT_PRE_OPERATION_CALLBACK PreOperation;

PFLT_POST_OPERATION_CALLBACK PostOperation;

PVOID Reserved1; // reserved

} FLT_OPERATION_REGISTRATION, *PFLT_OPERATION_REGISTRATION;

The operation itself is identified by a major function code, many of which are the same as the ones we
met in previous chapters: IRP_MJ_CREATE, IRP_MJ_READ, IRP_MJ_WRITE and so on. However, there are
other operations identified with a major function that do not have a real major function dispatch routine.
This abstraction provided by the filter manager helps to isolate the mini-filter from knowing the exact
source of the operation - it could be a real IRP or it could be another operation that is abstracted as an
IRP. Furthermore, file systems support another mechanism for receiving requests, known as Fast I/O. Fast
I/O is used for synchronous I/O with cached files. Fast I/O requests transfer data between user buffers and
the system cache directly, bypassing the file system and storage driver stack, thus avoiding unnecessary
overhead. The NTFS file system driver, as a canonical example, supports Fast I/O.

Fast I/O is initialized by allocating a FAST_IO_DISPATCH structure (containing a long list of callbacks),
filling it in, and then setting the FastIoDispatch member of DRIVER_OBJECT to this structure.

This information can be viewed with a kernel debugger by using the !drvobj command as shown here
for the NTFS file system driver:

lkd> !drvobj \filesystem\ntfs f

Driver object (ffffad8b19a60bb0) is for:

\FileSystem\Ntfs

Driver Extension List: (id , addr)

Device Object list:

ffffad8c22448050 ffffad8c476e3050 ffffad8c3943f050 ffffad8c208f1050

ffffad8b39e03050 ffffad8b39e87050 ffffad8b39e73050 ffffad8b39d52050

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 384

ffffad8b19fc9050 ffffad8b199f3d80

DriverEntry: fffff8026b609010 Ntfs!GsDriverEntry

DriverStartIo: 00000000

DriverUnload: 00000000

AddDevice: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE fffff8026b49bae0 Ntfs!NtfsFsdCreate

[01] IRP_MJ_CREATE_NAMED_PIPE fffff80269141d40 nt!IopInvalidDeviceRequest

[02] IRP_MJ_CLOSE fffff8026b49d730 Ntfs!NtfsFsdClose

[03] IRP_MJ_READ fffff8026b3b3f80 Ntfs!NtfsFsdRead

...

[19] IRP_MJ_QUERY_QUOTA fffff8026b49c700 Ntfs!NtfsFsdDispatchWait

[1a] IRP_MJ_SET_QUOTA fffff8026b49c700 Ntfs!NtfsFsdDispatchWait

[1b] IRP_MJ_PNP fffff8026b5143e0 Ntfs!NtfsFsdPnp

Fast I/O routines:

FastIoCheckIfPossible fffff8026b5adff0 Ntfs!NtfsFastIoCheckIfPossible

FastIoRead fffff8026b49e080 Ntfs!NtfsCopyReadA

FastIoWrite fffff8026b46cb00 Ntfs!NtfsCopyWriteA

FastIoQueryBasicInfo fffff8026b4d50d0 Ntfs!NtfsFastQueryBasicInfo

FastIoQueryStandardInfo fffff8026b4d2de0 Ntfs!NtfsFastQueryStdInfo

FastIoLock fffff8026b4d6160 Ntfs!NtfsFastLock

FastIoUnlockSingle fffff8026b4d6b40 Ntfs!NtfsFastUnlockSingle

FastIoUnlockAll fffff8026b5ad2d0 Ntfs!NtfsFastUnlockAll

FastIoUnlockAllByKey fffff8026b5ad590 Ntfs!NtfsFastUnlockAllByKey

ReleaseFileForNtCreateSection fffff8026b3c3670 Ntfs!NtfsReleaseForCreateSecti\

on

FastIoQueryNetworkOpenInfo fffff8026b4d4cb0 Ntfs!NtfsFastQueryNetworkOpenI\

nfo

AcquireForModWrite fffff8026b3c4c20 Ntfs!NtfsAcquireFileForModWrite

MdlRead fffff8026b46b6a0 Ntfs!NtfsMdlReadA

MdlReadComplete fffff8026911aca0 nt!FsRtlMdlReadCompleteDev

PrepareMdlWrite fffff8026b46aae0 Ntfs!NtfsPrepareMdlWriteA

MdlWriteComplete fffff802696c41e0 nt!FsRtlMdlWriteCompleteDev

FastIoQueryOpen fffff8026b4d4940 Ntfs!NtfsNetworkOpenCreate

ReleaseForModWrite fffff8026b3c5a40 Ntfs!NtfsReleaseFileForModWrite

AcquireForCcFlush fffff8026b3a8690 Ntfs!NtfsAcquireFileForCcFlush

ReleaseForCcFlush fffff8026b3c5610 Ntfs!NtfsReleaseFileForCcFlush

Device Object stacks:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 385

!devstack ffffad8c22448050 :

!DevObj !DrvObj !DevExt ObjectName

ffffad8c4adcba70 \FileSystem\FltMgr ffffad8c4adcbbc0

> ffffad8c22448050 \FileSystem\Ntfs ffffad8c224481a0

(truncated)

Processed 10 device objects.

The filter manager abstracts I/O operations, regardless of whether they are IRP-based or fast I/O based.
Mini-filters can intercept any such request. If the driver is not interested in fast I/O, for example, it can
query the actual request type provided by the filter manager with the FLT_IS_FASTIO_OPERATION and/or
FLT_IS_IRP_OPERATION macros.

Table 12-1 lists some of the common major functions for file system mini-filters with a brief description
for each.

Table 12-1: Common major functions

Major function Dispatch routine? Description

IRP_MJ_CREATE Yes Create or open a file/directory

IRP_MJ_READ Yes Read from a file

IRP_MJ_WRITE Yes Write to a file

IRP_MJ_QUERY_EA Yes Read extended attributes from a
file/directory

IRP_MJ_DIRECTORY_CONTROL Yes Request sent to a directory

IRP_MJ_FILE_SYSTEM_CONTROL Yes File system device I/O control request

IRP_MJ_SET_INFORMATION Yes Various information setting for a file (e.g.
delete, rename)

IRP_MJ_ACQUIRE_FOR_SECTION_-
SYNCHRONIZATION

No Section (memory mapped file) is being
opened

IRP_MJ_OPERATION_END No signals the end of array of operations
callbacks

The second field in FLT_OPERATION_REGISTRATION is a set of flags which can be zero or a combination
of one of the following flags affecting read and write operations:

• FLTFL_OPERATION_REGISTRATION_SKIP_CACHED_IO - do not invoke the callback(s) if it’s cached
I/O (such as fast I/O operations, which are always cached).

• FLTFL_OPERATION_REGISTRATION_SKIP_PAGING_IO - do not invoke the callback(s) for paging I/O
(IRP-based operations only).

• FLTFL_OPERATION_REGISTRATION_SKIP_NON_DASD_IO - do not invoke the callback(s) for DAX
volumes.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 386

The next two fields are the pre and post operation callbacks, where at least one must be non-NULL (oth-
erwise, why have that entry in the first place?). Here is an example of initializing an array of FLT_-
OPERATION_REGISTRATION structures (for an imaginary driver called “Sample”):

const FLT_OPERATION_REGISTRATION Callbacks[] = {

{ IRP_MJ_CREATE, 0, nullptr, SamplePostCreateOperation },

{ IRP_MJ_WRITE, FLTFL_OPERATION_REGISTRATION_SKIP_PAGING_IO,

SamplePreWriteOperation, nullptr },

{ IRP_MJ_CLOSE, 0, nullptr, SamplePostCloseOperation },

{ IRP_MJ_OPERATION_END }

};

With this array at hand, registration for a driver that does not require any contexts could be done with
the following code:

const FLT_REGISTRATION FilterRegistration = {

sizeof(FLT_REGISTRATION),

FLT_REGISTRATION_VERSION,

0, // Flags

nullptr, // Context

Callbacks, // Operation callbacks

ProtectorUnload, // MiniFilterUnload

SampleInstanceSetup, // InstanceSetup

SampleInstanceQueryTeardown, // InstanceQueryTeardown

SampleInstanceTeardownStart, // InstanceTeardownStart

SampleInstanceTeardownComplete, // InstanceTeardownComplete

};

PFLT_FILTER Filter;

NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

NTSTATUS status;

//... some code

status = FltRegisterFilter(DriverObject, &FilterRegistration, &Filter);

if(NT_SUCCESS(status)) {

//

// start I/O filtering

//

status = FltStartFiltering(Filter);

if(!NT_SUCCESS(status))

FltUnregisterFilter(Filter);

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 387

return status;

}

The Altitude

As we’ve seen already, file system mini-filters must have an altitude, indicating their relative “position”
within the file system filters hierarchy. Contrary to the altitude we’ve already encountered with object
and registry callbacks, a mini-filter’s altitude value may be potentially significant.

First, the value of the altitude is not provided as part of mini-filter’s registration, but is read from the
registry. When the driver is installed, its altitude is written in the proper location in the registry. Figure
12-4 shows the registry entry for the built-in Fileinfo mini-filter driver; the Altitude is clearly visible, and
is the same value shown earlier with the fltmc.exe tool.

Figure 12-4: Altitude in the registry

Here is an example that should clarify why altitude matters. Suppose there is a mini-filter at altitude 10000
whose job is to encrypt data whenwritten, and decrypt when read. Now suppose another mini-filter whose
job is to check data for malicious activity is at altitude 9000. This layout is depicted in Figure 12-5.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 388

Figure 12-5: Two mini-filter layout

The encryption driver encrypts incoming data to be written, which is then passed on to the anti-virus
driver. The anti-virus driver is in a problem, as it sees the encrypted data with no viable way of decrypting
it (and even if it could, that would be wasteful). In such a case, the anti-virus driver must have an altitude
higher than the encryption driver. How can such a driver guarantee this is in fact the case?

To rectify this (and other similar) situations, Microsoft has defined ranges of altitudes for drivers based
on their requirements (and ultimately, their role). In order to obtain a proper altitude, the driver publisher
must send an email to Microsoft (fsfcomm@microsoft.com) and ask an altitude be allocated for that driver
based on its intended target. Check out this link³ for the complete list of altitude ranges. In fact, the link
shows all drivers that Microsoft has allocated an altitude for, with the file name, the altitude and the
publishing company.

The altitude request email details are located at https://docs.microsoft.com/en-us/windows-
hardware/drivers/ifs/minifilter-altitude-request.

For testing purposes, you can choose any appropriate altitude without going throughMicrosoft,
but you should obtain an official altitude for production use.

Table 12-2 shows the list of groups and the altitude range for each group.

³https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/minifilter-altitude-request
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/minifilter-altitude-request
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes

Chapter 12: File System Mini-Filters 389

Table 12-2: Altitude ranges and load order groups

Altitude range Group name

420000 - 429999 Filter

400000 - 409999 FSFilter Top

360000 - 389999 FSFilter Activity Monitor

340000 - 349999 FSFilter Undelete

320000 - 329998 FSFilter Anti-Virus

300000 - 309998 FSFilter Replication

280000 - 289998 FSFilter Continuous Backup

260000 - 269998 FSFilter Content Screener

240000 - 249999 FSFilter Quota Management

220000 - 229999 FSFilter System Recovery

200000 - 209999 FSFilter Cluster File System

180000 - 189999 FSFilter HSM

170000 - 174999 FSFilter Imaging (ex: .ZIP)

160000 - 169999 FSFilter Compression

140000 - 149999 FSFilter Encryption

130000 - 139999 FSFilter Virtualization

120000 - 129999 FSFilter Physical Quota management

100000 - 109999 FSFilter Open File

80000 - 89999 FSFilter Security Enhancer

60000 - 69999 FSFilter Copy Protection

40000 - 49999 FSFilter Bottom

20000 - 29999 FSFilter System

Installation

Figure 12-4 shows that there are additional Registry entries that must be set, beyond what is possible with
the standard CreateService installation API we’ve been using up until now (indirectly with the sc.exe
tool). One way to install a file system mini-filter driver is to use an INF file. This approach was used in the
first edition of the book, because at the time there was a driver project template for file system mini-filters
provided with theWDK that used an INF file. Curiously enough, that template went away in recentWDKs
without any explanation. Although it’s possible to use an existing project from the first edition of the book
as a basis for a driver that uses an INF file for installation, I will show another way that does not require
an INF file at all.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 390

If you want to see how to use an INF file to install a file system mini-filter, please see chapter 10 in the
first edition of the book. Using an INF file is perfectly fine.

The alternative approach we’ll use is to write the required Registry values directly as part of DriverEntry
prior to calling FltRegisterFilter. The next driver example in this chapter, DelProtect, that will be
discussed in an upcoming section, uses this technique. Here is the code (error handling omitted):

HANDLE hKey = nullptr, hSubKey = nullptr;

NTSTATUS status;

OBJECT_ATTRIBUTES keyAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(

RegistryPath, OBJ_KERNEL_HANDLE);

status = ZwOpenKey(&hKey, KEY_WRITE, &keyAttr);

UNICODE_STRING subKey = RTL_CONSTANT_STRING(L"Instances");

OBJECT_ATTRIBUTES subKeyAttr;

InitializeObjectAttributes(&subKeyAttr, &subKey, OBJ_KERNEL_HANDLE, hKey,

nullptr);

status = ZwCreateKey(&hSubKey, KEY_WRITE, &subKeyAttr, 0, nullptr, 0, nullptr);

//

// set "DefaultInstance" value. Any name is fine.

//

UNICODE_STRING valueName = RTL_CONSTANT_STRING(L"DefaultInstance");

WCHAR name[] = L"DelProtectDefaultInstance";

status = ZwSetValueKey(hSubKey, &valueName, 0, REG_SZ, name, sizeof(name));

//

// create "instance" key under "Instances"

//

UNICODE_STRING instKeyName;

RtlInitUnicodeString(&instKeyName, name);

HANDLE hInstKey;

InitializeObjectAttributes(&subKeyAttr, &instKeyName, OBJ_KERNEL_HANDLE,

hSubKey, nullptr);

status = ZwCreateKey(&hInstKey, KEY_WRITE, &subKeyAttr, 0, nullptr, 0, nullptr);

//

// write out altitude

//

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 391

WCHAR altitude[] = L"425342";

UNICODE_STRING altitudeName = RTL_CONSTANT_STRING(L"Altitude");

status = ZwSetValueKey(hInstKey, &altitudeName, 0, REG_SZ,

altitude, sizeof(altitude));

//

// write out flags

//

UNICODE_STRING flagsName = RTL_CONSTANT_STRING(L"Flags");

ULONG flags = 0;

status = ZwSetValueKey(hInstKey, &flagsName, 0, REG_DWORD,

&flags, sizeof(flags));

ZwClose(hInstKey);

The Flags value in the Registry indicates what types of volume attach the driver is interested in. This can
have on of the following values:

• 1 - the driver is not interested in automatic attachments.
• 2 - the driver is not interested in manual attachments (as a result of FilterAttach,

FilterAttachAtAltitude or their kernel equivalents).

• 0 - the driver is interested in all attachments.

If you don’t write the “Flags” value at all, FltRegisterFilter fails.

The last missing piece is the need to link with the Filter Manager API, implemented in FltMgr.lib. It must
be added to the Linker input libraries as shown in figure 12-6.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 392

Figure 12-6: FltMgr.lib in Linker options

Make sure you select “All Platforms” and “All Configurations”. You cannot add the FltMgr.lib
in source code using a #pragma comment(lib, "ftlmgr") similarly to user mode. I don’t
know why the linker does not accept this option.

Installing the Driver

With the Registry stuff being written by the driver itself, installing the file system mini-filter can be done
with the same CreateServiceAPI call, or a tool such as sc.exe. The only difference is specifying the driver
type to be file system-related rather than a generic driver. Here is the command for the DelProtect driver:

sc create delprotect type= filesys binPath= c:\Test\kdelprotect.sys

Notice the “type= filesys” instead of “type= kernel” we used in previous chapters. This writes a value of
2 in the Type value in the Registry, rather than 1. Does that really matter? As far as I can tell - it doesn’t,
but still, it’s best to write the expected value.

Processing I/O Operations

Themain function of a file systemmini-filter is processing I/O operations by implementing pre and/or post
callbacks for the operations of interest. Pre operations allow a mini-filter to reject an operation completely,
while post operations allow looking at the result of the operation, and in some cases - making changes to
the returned information.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 393

Pre Operation Callbacks

All pre-operation callbacks have the same prototype as follows:

FLT_PREOP_CALLBACK_STATUS SomePreOperation (

Inout PFLT_CALLBACK_DATA Data,

In PCFLT_RELATED_OBJECTS FltObjects,

Outptr PVOID *CompletionContext);

First, let’s look at the possible return values from a pre-operation, typed as the FLT_PREOP_CALLBACK_-
STATUS enumeration. Here are the common return values to use:

• FLT_PREOP_COMPLETE indicates the driver is completing the operation. The filter manager does not
call the post-operation callback (if registered) and does not forward the request to lower-layer mini-
filters.

• FLT_PREOP_SUCCESS_NO_CALLBACK indicates the pre-operation is done with the request and lets it
continue flowing to the next filter. The driver does not want its post-operation callback to be called
for this operation.

• FLT_PREOP_SUCCESS_WITH_CALLBACK indicates the driver allows the filter manager to propagate
the request to lower-layer filters, but it wants its post-operation callback invoked for this operation.

• FLT_PREOP_PENDING indicates the driver is pending the operation. The filter manager does not
continue processing the request until the driver calls FltCompletePendedPreOperation to let the
filter manager know it can continue processing this request.

• FLT_PREOP_SYNCHRONIZE is similar to FLT_PREOP_SUCCESS_WITH_CALLBACK, but the driver asks
the filter manager to invoke its post-callback on the same thread at IRQL <= APC_LEVEL (normally
the post-operation callback can be invoked at IRQL <= DISPATCH_LEVEL by an arbitrary thread).

The Data argument provides all the information related to the I/O operation itself, as a FLT_CALLBACK_-
DATA structure defined like so:

typedef struct _FLT_CALLBACK_DATA {

FLT_CALLBACK_DATA_FLAGS Flags;

PETHREAD CONST Thread;

PFLT_IO_PARAMETER_BLOCK CONST Iopb;

IO_STATUS_BLOCK IoStatus;

struct _FLT_TAG_DATA_BUFFER *TagData;

union {

struct {

LIST_ENTRY QueueLinks;

PVOID QueueContext[2];

};

PVOID FilterContext[4];

};

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 394

KPROCESSOR_MODE RequestorMode;

} FLT_CALLBACK_DATA, *PFLT_CALLBACK_DATA;

This structure is also provided in the post-callback. Here is a rundown of the important members of this
structure:

* Flags may contain zero or a combination of flags, some of which are listed below:

* FLTFL_CALLBACK_DATA_DIRTY indicates the driver has made changes to the structure and then called
FltSetCallbackDataDirty. Everymember of the structure can bemodified except Thread and RequestorMode.
* FLTFL_CALLBACK_DATA_FAST_IO_OPERATION indicates this is a fast I/O operation.
* FLTFL_CALLBACK_DATA_IRP_OPERATION indicates this is an IRP-based operation.
* FLTFL_CALLBACK_DATA_GENERATED_IO indicates this is an operation generated by another mini-filter.
* FLTFL_CALLBACK_DATA_POST_OPERATION indicates this is a post-operation, rather than a pre-operation.

• Thread is an opaque pointer to the thread requesting this operation.
• IoStatus is the status of the request. A pre-operation can set this value and then indicate the operation
is complete by returning FLT_PREOP_COMPLETE. A post-operation can look at the final status of the
operation.

• RequestorMode indicates whether the requestor of the operation is from user mode (UserMode) or
kernel mode (KernelMode).

• Iopb is in itself a structure holding the detailed parameters of the request, defined like so:

ULONG IrpFlags;

UCHAR MajorFunction;

UCHAR MinorFunction;

UCHAR OperationFlags;

UCHAR Reserved;

PFILE_OBJECT TargetFileObject;

PFLT_INSTANCE TargetInstance;

FLT_PARAMETERS Parameters;

} FLT_IO_PARAMETER_BLOCK, *PFLT_IO_PARAMETER_BLOCK;

The useful member of this structure are the following:

• TargetFileObject is the file object that is the target of this operation; it’s useful to havewhen invoking
some APIs.

• Parameters is a monstrous union providing the actual data for the specific information (similar
in concept to the Paramters member of an IO_STACK_LOCATION). The driver looks at the proper
structure within this union to get to the information it needs. We’ll look at some of these structures
once we look at specific operation types, later in this chapter.

The second argument to the pre-callback is another structure of type FLT_RELATED_OBJECTS. This struc-
ture mostly contains opaque handles to the current filter, instance and volume, which are useful in some
APIs. Here is the complete definition of this structure:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 395

typedef struct _FLT_RELATED_OBJECTS {

USHORT CONST Size;

USHORT CONST TransactionContext;

PFLT_FILTER CONST Filter;

PFLT_VOLUME CONST Volume;

PFLT_INSTANCE CONST Instance;

PFILE_OBJECT CONST FileObject;

PKTRANSACTION CONST Transaction;

} FLT_RELATED_OBJECTS, *PFLT_RELATED_OBJECTS;

The FileObject field is the same one accessed through the I/O parameter block’s TargetFileObject field.

The last argument to the pre-callback is a context value that can be set by the driver. If set, this value is
propagated to the post-callback routine for the same request (the default value is NULL).

Post Operation Callbacks

All post-operation callbacks have the same prototype as follows:

FLT_POSTOP_CALLBACK_STATUS SomePostOperation (

Inout PFLT_CALLBACK_DATA Data,

In PCFLT_RELATED_OBJECTS FltObjects,

_In_opt_ PVOID CompletionContext,

In FLT_POST_OPERATION_FLAGS Flags);

The post-operation function is called at IRQL <= DISPATCH_LEVEL in an arbitrary thread context, unless
the pre-callback routine returned FLT_PREOP_SYNCHRONIZE, in which case the filter manager guarantees
the post-callback is invoked at IRQL < DISPATCH_LEVEL on the same thread that executed the pre-callback.

In the former case, the driver cannot perform certain types of operations because the IRQL is too high:

• Cannot access paged memory.
• Cannot use kernel APIs that only work at IRQL < DISPATCH_LEVEL.
• Cannot acquire synchronization primitives such as mutexes, fast mutexes, executive resources,
semaphores, events, etc. (It can acquire spin locks, however.)

• Cannot set, get or delete contexts (see the section “Contexts” later in this chapter), but it can release
contexts.

If the driver needs to do any of the above, it somehow must defer its execution to another routine called
at IRQL < DISPATCH_LEVEL. This can be done in one of two ways:

• The driver calls FltDoCompletionProcessingWhenSafe which sets up a callback function that is
invoked by a system worker thread at IRQL < DISPATCH_LEVEL (if the post-operation was called at
IRQL = DISPATCH_LEVEL).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 396

• The driver posts a work item by calling FltQueueDeferredIoWorkItem, which queues a work item
that will eventually execute by a system worker thread at IRQL = PASSIVE_LEVEL. In the work
item callback, the driver will eventually call FltCompletePendedPostOperation to signal the filter
manager that the post-operation is complete.

Although using FltDoCompletionProcessingWhenSafe is easier, it has some limitations that prevent it
from being used in some scenarios:

• Cannot be used for IRP_MJ_READ, IRP_MJ_WRITE or IRP_MJ_FLUSH_BUFFERS because it can cause
a deadlock if these operations are completed synchronously by a lower layer.

• Can only be called for IRP-based operations (can check with the FLT_IS_IRP_OPERATION macro).

In any case, using one of these deferring mechanisms is not allowed if the flags argument is
set to FLTFL_POST_OPERATION_DRAINING, which means the post-callback is part of volume
detaching. In this case, the post callback is called at IRQL < DISPATCH_LEVEL.

Though it seems easy to just return FLT_PREOP_SYNCHRONIZE from the pre-callback to have
the pos-callback run in a convenient context, it does carry some overhead with it, which the
driver may want to avoid if possible.

The post-create operation (IRP_MJ_CREATE) is guaranteed to be called by the requesting thread
at IRQL PASSIVE_LEVEL.

The returned value from the pos-callback is usually FLT_POSTOP_FINISHED_PROCESSING to indicate
the driver is finished with this operation. However, if the driver needs to perform work in a work
item (because of a high IRQL, for example), the driver can return FLT_POSTOP_MORE_PROCESSING_-
REQUIRED to tell the filer manager the operation is still pending completion, and in the work item call
FltCompletePendedPostOperation to let the filter manager know it can continue processing this request.

There are many little details here, check out the WDK documentation for yet more details. We’ll use
some of the above mechanisms later in this chapter.

File Names

In some mini-filter callbacks, the name of the file being accessed is needed. At first, this seems like an
easy detail to find: the FILE_OBJECT structure has a FileName member, which should be exactly what is
needed.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 397

Unfortunately, things are not that simple. Files may be opened with a full path or a relative one; rename
operations on the same file may be occurring at the same time; some file name information is cached. For
these and other internal reasons, the FileName field in the file object is not be trusted. In fact, it’s only
guaranteed to be valid in an IRP_MJ_CREATE pre-operation callback, and even there it’s not necessarily in
the format the driver needs.

To offset this issues, the filter manager provides the FltGetFileNameInformation API that can return
the correct file name when needed. This function is prototyped as follows:

NTSTATUS FltGetFileNameInformation (

In PFLT_CALLBACK_DATA CallbackData,

In FLT_FILE_NAME_OPTIONS NameOptions,

Outptr PFLT_FILE_NAME_INFORMATION *FileNameInformation);

The CallbackData parameter is the one provided by the filter manager in any callback. The NameOptions
parameter is a set of flags that specify (among other things) the requested file format. Typical value used
by most drivers is FLT_FILE_NAME_NORMALIZED (full path name) ORed with FLT_FILE_NAME_QUERY_-
DEFAULT (locate the name in a cache, otherwise query the file system).
The result from the call is provided by the last parameter, FileNameInformation. The result is an allocated
structure that needs to be properly freed by calling FltReleaseFileNameInformation.

The FLT_FILE_NAME_INFORMATION structure is defined like so:

typedef struct _FLT_FILE_NAME_INFORMATION {

USHORT Size;

FLT_FILE_NAME_PARSED_FLAGS NamesParsed;

FLT_FILE_NAME_OPTIONS Format;

UNICODE_STRING Name;

UNICODE_STRING Volume;

UNICODE_STRING Share;

UNICODE_STRING Extension;

UNICODE_STRING Stream;

UNICODE_STRING FinalComponent;

UNICODE_STRING ParentDir;

} FLT_FILE_NAME_INFORMATION, *PFLT_FILE_NAME_INFORMATION;

The main ingredients are the several UNICODE_STRING structures that should hold the various components
of a file name. Initially, only the Name field is initialized to the full file name (depending on the flags
used to query the file name information, “full” may be a partial name). If the request specified the flag
FLT_FILE_NAME_NORMALIZED, then Name points to the full path name, in device form. Device form means
that file such as c:\mydir\myfile.txt is stored with the internal device name to which “C:” maps to, such
as \Device\HarddiskVolume3\mydir\myfile.txt. This makes the driver’s job a bit more complicated if it
somehow depends on paths provided by user mode (more on that later).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 398

The driver should never modify this structure, because the filter manager sometimes caches it
for use with other drivers.

Since only the full name is provided by default (Name field), it’s often necessary to split the full path to its
constituents. Fortunately, the filtermanager provides such a servicewith the FltParseFileNameInformation
API. This one takes the FLT_FILE_NAME_INFORMATION object and fills in the other UNICODE_STRING fields
in the structure.

Note that FltParseFileNameInformation does not allocate anything. It just sets each UNICODE_-
STRING’s Buffer and Length to point to the correct parts in the full Name field. This means there is no
“unparse” function and it’s not needed.

In scenarios where a simple C string is available for a full path, the simpler (and weaker)
function FltParseFileName can be used for getting easy access to the file extension, stream
and final component. It can also be used outside the scope of file system mini-filters.

File Name Parts

As can be seen from FLT_FILE_NAME_INFORMATION declaration, there are several components that make
up a full file name. Here is an example for the local file “c:\mydir1\mydir2\myfile.txt”:

The volume is the actual device name for which the symbolic link “C:” maps to. Figure 12-8 showsWinObj
showing the C: symbolic link and its target, which is \Device\HarddiskVolume3 on that machine.

Figure 12-8: Driver Mapping inWinObj

The share string is empty for local files (Length is zero). ParentDir is set to the directory only. In our
example that would be \mydir1\mydir2\ (not the trailing backslash). The extension is just that, the file
extension. In our example this is txt.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 399

The FinalComponent field stores the file name and stream name (if not using the default stream). For our
example, it would be myfile.txt.

The Stream component bares some explanation. Some file systems (most notable NTFS) provide the ability
to have multiple data “streams” in a single file. Essentially, this means several files can be stored into
a single “physical” file. In NTFS, for instance, what we typically think of as a file’s data is in fact one
of its streams named “$DATA”, which is considered the default stream. But it’s possible to create/open
another stream, that is stored in the same file, so to speak. Tools such as Windows Explorer do not look
for these streams, and the sizes of any alternate streams are not shown or returned by standard APIs such
as GetFileSize. Stream names are specified with a colon after the file name before the stream name
itself. For example, the file name “myfile.txt:mystream” points to an alternate stream named “mystream”
within the file “myfile.txt”. Alternate streams can be createdwith the command interpreter as the following
example shows:

C:\temp>echo hello > hello.txt:mystream

C:\Temp>dir hello.txt

Volume in drive C is OS

Volume Serial Number is 1707-9837

Directory of C:\Temp

22-May-19 11:33 0 hello.txt

1 File(s) 0 bytes

Notice the zero size of the file. Is the data really in there? Trying to use the type command fails:

C:\Temp>type hello.txt:mystream

The filename, directory name, or volume label syntax is incorrect.

The type command interpreter does not recognize stream names. We can use the SysInternals tool
Streams.exe to list the names and sizes of alternate streams in files. Here is the command with our
hello.txt file:

C:\Temp>streams -nobanner hello.txt

C:\Temp\hello.txt:

:mystream:$DATA 8

The alternate stream content is not shown. To view (and optionally export to another file) the stream’s
data, we can use a tool called NtfsStreams available on my Github AllTools repository. Figure 12-7 shows
NtfsStreams opening the hello.txt file from the previous example. We can clearly see stream’s size and
data.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 400

The “$DATA” shown is the stream type, where $DATA is the normal data stream (there are other
predefined stream types). Custom stream types are specifically used in reparse points (beyond the scope
of this book).

Figure 12-7: Alternate Streams in NtfsStreams

Of course alternate streams can be created programmatically by passing the stream name at the end of the
filename after a colon, to the CreateFile API. Here is an example (error handling omitted):

HANDLE hFile = ::CreateFile(L"c:\\temp\\myfile.txt:stream1",

GENERIC_WRITE, 0, nullptr, OPEN_ALWAYS, 0, nullptr);

char data[] = "Hello, from a stream";

DWORD bytes;

::WriteFile(hFile, data, sizeof(data), &bytes, nullptr);

::CloseHandle(hFile);

Streams can also be deleted normally with DeleteFile and can be enumerated (this is what streams.exe
and ntfsstreams.exe do) with FindFirstStream and FileNextStream.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 401

RAII FLT_FILE_NAME_INFORMATION wrapper

As discussed in the previous section, calling FltGetFileNameInformation requires calling its opposite
function, FltReleaseFileNameInformation. This naturally leads to the possibility of creating a RAII
wrapper to take care of this, making the surrounding code simpler and less error prone. Here is one possible
declaration for such a wrapper:

enum class FileNameOptions {

Normalized = FLT_FILE_NAME_NORMALIZED,

Opened = FLT_FILE_NAME_OPENED,

Short = FLT_FILE_NAME_SHORT,

QueryDefault = FLT_FILE_NAME_QUERY_DEFAULT,

QueryCacheOnly = FLT_FILE_NAME_QUERY_CACHE_ONLY,

QueryFileSystemOnly = FLT_FILE_NAME_QUERY_FILESYSTEM_ONLY,

RequestFromCurrentProvider = FLT_FILE_NAME_REQUEST_FROM_CURRENT_PROVIDER,

DoNotCache = FLT_FILE_NAME_DO_NOT_CACHE,

AllowQueryOnReparse = FLT_FILE_NAME_ALLOW_QUERY_ON_REPARSE

};

DEFINE_ENUM_FLAG_OPERATORS(FileNameOptions);

struct FilterFileNameInformation {

FilterFileNameInformation(PFLT_CALLBACK_DATA data, FileNameOptions options \

=

FileNameOptions::QueryDefault | FileNameOptions::Normalized);

~FilterFileNameInformation();

operator bool() const {

return _info != nullptr;

}

operator PFLT_FILE_NAME_INFORMATION() const {

return Get();

}

PFLT_FILE_NAME_INFORMATION operator->() {

return _info;

}

NTSTATUS Parse();

private:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 402

PFLT_FILE_NAME_INFORMATION _info;

};

The non-inline functions are defined below:

FilterFileNameInformation::FilterFileNameInformation(

PFLT_CALLBACK_DATA data, FileNameOptions options) {

auto status = FltGetFileNameInformation(data,

(FLT_FILE_NAME_OPTIONS)options, &_info);

if (!NT_SUCCESS(status))

_info = nullptr;

}

FilterFileNameInformation::~FilterFileNameInformation() {

if (_info)

FltReleaseFileNameInformation(_info);

}

NTSTATUS FilterFileNameInformation::Parse() {

return FltParseFileNameInformation(_info);

}

Using this wrapper can be something like the following:

FilterFileNameInformation nameInfo(Data);

if(nameInfo) { // operator bool()

if(NT_SUCCESS(nameInfo.Parse())) {

KdPrint(("Final component: %wZ\n", &nameInfo->FinalComponent));

}

}

The Delete Protector Driver

it’s time to put some of the information discussed so far into an actual driver. The driver we’ll create will be
able to protect certain files from deletion. We’ll start by creating a new Empty WDM Filter project named
KDelProtect (or another name of your choosing). Then we’ll delete the INF file, since we are going to use
the code presented earlier in this chapter to properly “register” the driver.

The main question we need to answer is: how does a file deletion manifested in a file system (and mini-
filter)?
It turns out there are two way to delete a file. One way is to use IRP_MJ_SET_INFORMATION operation.
This major function code provides a bag of operations, delete being one of them. Sending this request to a
driver can be done by the user-mode APIs such as SetFileInformationByHandle and kernel APIs such

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 403

as NtSetInformationFile. The second way to delete a file (and in fact the most common) is to open the
file with the FILE_DELETE_ON_CLOSE option flag. The file then is deleted as soon as the last handle to it
is closed.

This flag can be set from user mode in CreateFile with FILE_FLAG_DELETE_ON_CLOSE as one of the
flags (second to last argument). The higher level function DeleteFile uses the same flag behind the
scenes.

For our driver, we want to support both options to cover all our bases. The driver will protect files with
client-defined extensions against deletion. A client can request to set a list of extensions, which means we
also nee a “standard” device object (as we created many times before), sometimes reffered to as Control
Device Object (CDO).

We’ll start by adding a Driver.h file to contain private driver data. This file looks like the following:

#pragma once

#include "ExecutiveResource.h"

struct FilterState {

PFLT_FILTER Filter;

UNICODE_STRING Extentions;

ExecutiveResource Lock;

PDRIVER_OBJECT DriverObject;

};

extern FilterState g_State;

The Filter member will hold the mini-filter registration handle. Extensions will hold the list of exten-
sions we must protect from deletion - the format of that will be described later. Finally, any changes to
the extensions list requires synchronization, so an Execuitive Resource is used (with a RAII wrapper that
we saw in chapter 6). Since most of the time the extension list is read (rather than written), an Executive
Resource is the best synchronization primitive to use.

Why do we need a driver object pointer stored in FilterState? This will become clear when we imple-
ment the driver’s unload functionality.

Given the above declararion, we can create a global instance of the FilterState structure, initialize it,
and proceed to create the CDO and a symbolic link. Here is the complete DriverEntry (in the file named
Driver.cpp), with some KdPrint omitted for brevity:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 404

FilterState g_State;

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

auto status = g_State.Lock.Init();

if (!NT_SUCCESS(status))

return status;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\DelProtect");

PDEVICE_OBJECT devObj = nullptr;

bool symLinkCreated = false;

do {

status = InitMiniFilter(DriverObject, RegistryPath);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Failed to init mini-filter (0x%X)\n", statu\

s));

break;

}

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\DelProtect");

status = IoCreateDevice(DriverObject, 0, &devName, FILE_DEVICE_UNKNOWN,\

0, FALSE, &devObj);

if (!NT_SUCCESS(status))

break;

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status))

break;

symLinkCreated = true;

status = FltStartFiltering(g_State.Filter);

if (!NT_SUCCESS(status))

break;

} while (false);

if (!NT_SUCCESS(status)) {

g_State.Lock.Delete();

if(g_State.Filter)

FltUnregisterFilter(g_State.Filter);

if (symLinkCreated)

IoDeleteSymbolicLink(&symLink);

if (devObj)

IoDeleteDevice(devObj);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 405

return status;

}

g_State.DriverObject = DriverObject;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = OnCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = OnDeviceControl;

return status;

}

The InitMiniFilter call is used to register the mini-filter. It’s implemeneted in the MiniFilter.cpp file,
to make the driver pieces more “managaeable” - not everything is in the same file. if the mini-filter is
initialized successfully (and all other initializations succeed as well), the call to FltStartFiltering starts
the mini-filter action.

Let’s examine the initialization in InitMiniFilter. The first step is to initialize the “extensions” we
protect. For demonstration and testing purposes we’ll initialize it to a “PDF” extension. This is an arbitrary
choice, but it allows easy testing of the driver even before we implement the client-facing functionlaity
that allows changing the extensions being protected:

NTSTATUS

InitMiniFilter(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

WCHAR ext[] = L"PDF;";

g_State.Extentions.Buffer = (PWSTR)ExAllocatePool2(POOL_FLAG_PAGED,

sizeof(ext), DRIVER_TAG);

if (g_State.Extentions.Buffer == nullptr)

return STATUS_NO_MEMORY;

memcpy(g_State.Extentions.Buffer, ext, sizeof(ext));

g_State.Extentions.Length = g_State.Extentions.MaximumLength = sizeof(ext);

The string is allocated dynamically for consistency: if a client modifies the extensions later, the driver will
free the existing string and then allocate a new one. To make it easier to work with multiple protected
extensions, I decided to keep a single string in memory with the extensions stored in uppercase and
separated by semicolons. For example, the string “PDF;DOCX;” indicates protecting PDF and DOCX files
from deletion.

The next piece of code writes the correct Registry entries for the FltRegisterFilter to have a chance of
success. The code is shown in the section “Installation”, earlier in this chapter, so I will not repeat it here.
After the Registry values are written the filter can be registered. We have to prepare an array of callback
structures based on what we need to support - namely IRP_MJ_CREATE (check for files opened with the
“delete-on-close” flag), and IRP_MJ_SET_INFORMATION (if a file is deleted explicitly):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 406

FLT_OPERATION_REGISTRATION const callbacks[] = {

{ IRP_MJ_CREATE, 0, DelProtectPreCreate, nullptr },

{ IRP_MJ_SET_INFORMATION, 0, DelProtectPreSetInformation, nullptr },

{ IRP_MJ_OPERATION_END }

};

We need pre-operations only, as our purpose is to prevent delete operations. Post-operations don’t make
sense, as the “deed is already done” at that point. Now the main registration structure and the registration
itself:

FLT_REGISTRATION const reg = {

sizeof(FLT_REGISTRATION),

FLT_REGISTRATION_VERSION,

0, // Flags

nullptr, // Context

callbacks, // Operation callbacks

DelProtectUnload, // MiniFilterUnload

DelProtectInstanceSetup, // InstanceSetup

DelProtectInstanceQueryTeardown, // InstanceQueryTeardown

DelProtectInstanceTeardownStart, // InstanceTeardownStart

DelProtectInstanceTeardownComplete, // InstanceTeardownComplete

};

status = FltRegisterFilter(DriverObject, ®, &g_State.Filter);

The DelProtectInstanceSetup callback is where the the mini-filter decides (for each volume) to attach
or to skip. In this example, let’s decide to attach to NTFS volumes only:

NTSTATUS

DelProtectInstanceSetup(

PCFLT_RELATED_OBJECTS FltObjects, FLT_INSTANCE_SETUP_FLAGS Flags,

DEVICE_TYPE VolumeDeviceType, FLT_FILESYSTEM_TYPE VolumeFilesystemType) {

UNREFERENCED_PARAMETER(FltObjects);

UNREFERENCED_PARAMETER(Flags);

UNREFERENCED_PARAMETER(VolumeDeviceType);

return VolumeFilesystemType == FLT_FSTYPE_NTFS

? STATUS_SUCCESS : STATUS_FLT_DO_NOT_ATTACH;

}

STATUS_FLT_DO_NOT_ATTACH indicates the filter does not wish to attach to this volume, while STATUS_-
SUCCESS indicates that it does. Using the file system type is one way to make a decision, where the
VolumeDeviceType is another. Consult the docs for the details.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 407

The mini-filter unload callabck is where the mini-filter is unregistered. The driver should not add a normal
unload routine by setting the DriverUnload member of the DRIVER_OBJECT. The reason is that the filter
manager takes control of this callback. If you set it after FltRegisterFilter, some cleanup won’t happen.
If you set it before, it would simply be overriden by FltRegisterFilter. In summary, this is where our
cleanup is done:

NTSTATUS DelProtectUnload(FLT_FILTER_UNLOAD_FLAGS Flags) {

UNREFERENCED_PARAMETER(Flags);

FltUnregisterFilter(g_State.Filter);

g_State.Lock.Delete();

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\DelProtect");

IoDeleteSymbolicLink(&symLink);

IoDeleteDevice(g_State.DriverObject->DeviceObject);

return STATUS_SUCCESS;

}

The remaining instance-related callbacks simply return STATUS_SUCCESS, but can be customized if desired.

Handling Pre-Create

The pre-create callback has the job to look for a file opened with the “delete-on-close” flag. The function
itself has the same prototype like all pre-operation callbacks. It starts by not blocking kernel callers:

FLT_PREOP_CALLBACK_STATUS

DelProtectPreCreate(PFLT_CALLBACK_DATA Data,

PCFLT_RELATED_OBJECTS FltObjects, PVOID*) {

UNREFERENCED_PARAMETER(FltObjects);

if (Data->RequestorMode == KernelMode)

return FLT_PREOP_SUCCESS_NO_CALLBACK;

Allowing kernel callers to move forward regardless is not mandatory of course, but in most cases we don’t
want to prevent kernel code from doing work that may be necessary.

Next we need to check if the flag FILE_DELETE_ON_CLOSE exists in the creation request. The structure to
look at is the Create field under the Paramaters inside Iopb as follows:

const auto& params = Data->Iopb->Parameters.Create;

if (params.Options & FILE_DELETE_ON_CLOSE) {

// delete flag

}

The above params variable references the Create structure defined like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 408

struct {

PIO_SECURITY_CONTEXT SecurityContext;

//

// The low 24 bits contains CreateOptions flag values.

// The high 8 bits contains the CreateDisposition values.

//

ULONG Options;

USHORT POINTER_ALIGNMENT FileAttributes;

USHORT ShareAccess;

ULONG POINTER_ALIGNMENT EaLength;

PVOID EaBuffer; //Not in IO_STACK_LOCATION parameters list

LARGE_INTEGER AllocationSize; //Not in IO_STACK_LOCATION parameters list

} Create;

Generally, for any I/O operation, the documentation must be consulted to understand what’s available
and how to use it. In our case, the Options field is a combination of flags documented under the
FltCreateFile function (which we’ll use later in this chapter in an unrelated context). The code checks
to see if this flag exists, and if so, it means a delete operation is being initiated.

If the file is opened for deletion, we need to examine the file name and check if its extension is one that
we protect. If true, we have to fail the request. Here is the code:

auto status = FLT_PREOP_SUCCESS_NO_CALLBACK;

if (params.Options & FILE_DELETE_ON_CLOSE) {

auto filename = &FltObjects->FileObject->FileName;

KdPrint(("Delete on close: %wZ\n", filename));

if (!IsDeleteAllowed(filename)) {

Data->IoStatus.Status = STATUS_ACCESS_DENIED;

status = FLT_PREOP_COMPLETE;

KdPrint(("(Pre Create) Prevent deletion of %wZ\n", filename));

}

}

return status;

}

The file name can be obtained by directly examining the file object - this is only allowed for a pre-create
operation callback, which is exactly the callback we’re in. In all other cases, FltGetFileNameInformation
is the way to go.

IsDeleteAllowed is a private driver function to extract the extension and compare it to the list of exten-
tions the driver maintains:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 409

bool IsDeleteAllowed(PCUNICODE_STRING filename) {

UNICODE_STRING ext;

if (NT_SUCCESS(FltParseFileName(filename, &ext, nullptr, nullptr))) {

WCHAR uext[16] = { 0 };

UNICODE_STRING suext;

suext.Buffer = uext;

//

// save space for NULL terminator and a semicolon

//

suext.MaximumLength = sizeof(uext) - 2 * sizeof(WCHAR);

RtlUpcaseUnicodeString(&suext, &ext, FALSE);

RtlAppendUnicodeToString(&suext, L";");

//

// search for the prefix

//

return wcsstr(g_State.Extentions.Buffer, uext) == nullptr;

}

return true;

}

The function starts by calling FltParseFileName to extract the extension. You may be thinking that
getting to the extension should be fairly easy by calling something like wcsrchr, looking for a dot. However,
if the file has a custom NTFS stream name, then finding the end of the extension would require looking
for a colon - not too complex, but why bother when there exists an API that does the heavy lifting? Here
is the prototype of FltParseFileName:

NTSTATUS FltParseFileName (

In PCUNICODE_STRING FileName,

_Inout_opt_ PUNICODE_STRING Extension,

_Inout_opt_ PUNICODE_STRING Stream,

_Inout_opt_ PUNICODE_STRING FinalComponent);

The input is a UNICODE_STRING, with 3 outputs, all of them optional. This API does not allocate anything
- it simply points the UNICODE_STRING objects to the FileName. We just need the extension, so the other
arguments can be set to NULL.

The rest of the code does some juggling to convert the extension to uppercase (RtlUpcaseUnicodeString)
so that wcsstr can be used to search for the extension in the Extensionsmember we maintain inside the
FilterState structure. If the extension is not found (wcsstr returns NULL), the function returns true to
indicate file deletion is allowed.

Handling Pre-Set Information

We are now ready to implement the pre-set information callback to cover our bases, so to speak, with
the second way file deletion is implemented by file systems. We’ll start by ignoring kernel callers as with

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 410

IRP_MJ_CREATE:

FLT_PREOP_CALLBACK_STATUS DelProtectPreSetInformation(

PFLT_CALLBACK_DATA Data, PCFLT_RELATED_OBJECTS FltObjects, PVOID*) {

UNREFERENCED_PARAMETER(FltObjects);

if (Data->RequestorMode == KernelMode)

return FLT_PREOP_SUCCESS_NO_CALLBACK;

Since IRP_MJ_SET_INFORMATION is the way to do several types of operations, we need to check if this is
in fact a delete operation. The driver must first access the proper structure in the FLT_PARAMETERS union,
declared like so:

struct {

ULONG Length;

FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass;

PFILE_OBJECT ParentOfTarget;

union {

struct {

BOOLEAN ReplaceIfExists;

BOOLEAN AdvanceOnly;

};

ULONG ClusterCount;

HANDLE DeleteHandle;

};

PVOID InfoBuffer;

} SetFileInformation;

FileInformationClass indicates which type of operation this instance represents and so we need to
check whether this is a delete operation:

auto status = FLT_PREOP_SUCCESS_NO_CALLBACK;

auto& params = Data->Iopb->Parameters.SetFileInformation;

if (params.FileInformationClass == FileDispositionInformation ||

params.FileInformationClass == FileDispositionInformationEx) {

The FileDispositionInformation enumeration value indicates a delete operation. The
FileDispositionInformationEx is similar, slightly extended, available in Windows 10 version 1607 and
later.

If it is a delete operation, there is yet another check to do, by looking at the information buffer which is of
type FILE_DISPOSITION_INFORMATION(Ex) for delete operations and checking the boolean/flags stored
there. Here are the structues and the relevant flag for the extended one:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 411

typedef struct _FILE_DISPOSITION_INFORMATION {

BOOLEAN DeleteFile;

} FILE_DISPOSITION_INFORMATION, *PFILE_DISPOSITION_INFORMATION;

#define FILE_DISPOSITION_DELETE 0x00000001

typedef struct _FILE_DISPOSITION_INFORMATION_EX {

ULONG Flags;

} FILE_DISPOSITION_INFORMATION_EX;

Checking for a value of one covers both cases well-enough:

auto info = (FILE_DISPOSITION_INFORMATION*)params.InfoBuffer;

if (info->DeleteFile & 1) { // also covers FileDispositionInformationEx Flags

The next step is to check the file extension that is about to be deleted. Since this is not a pre-create callback,
wemust use FltGetFileNameInformation to get the file name, and then call IsDeleteAllowed as before:

PFLT_FILE_NAME_INFORMATION fi;

//

// using FLT_FILE_NAME_NORMALIZED is important here for parsing purposes

//

if (NT_SUCCESS(FltGetFileNameInformation(

Data, FLT_FILE_NAME_QUERY_DEFAULT | FLT_FILE_NAME_NORMALIZED, &fi))) {

if (!IsDeleteAllowed(&fi->Name)) {

Data->IoStatus.Status = STATUS_ACCESS_DENIED;

KdPrint(("(Pre Set Information) Prevent deletion of %wZ\n",

&fi->Name));

status = FLT_PREOP_COMPLETE;

}

FltReleaseFileNameInformation(fi);

}

Nowwe can test the complete driver - we’ll find that files of the selected extensions cannot be deleted. Here
is an example command sequence once the driver is installed and PDF files are suppooed to be protected:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 412

c:\temp\>dir

10/19/2022 01:13 PM <DIR> .

05/28/2022 01:09 PM <DIR> Test

10/19/2022 10:41 AM 5 hello1.pdf

10/19/2022 10:41 AM 5 hello2.txt

10/19/2022 10:41 AM 5 hello3.txt

C:\Temp>del hello2.txt

C:\Temp>del hello1.pdf

Access is denied.

DelProtect Configuration

Now that we have the basic driver working, we can add support for custom extensions. The driver can
define a control code to be shared with user mode clients, defined in DelProtectPublic.h:

#define DEVICE_DELPROTECT 0x8009

#define IOCTL_DELPROTECT_SET_EXTENSIONS CTL_CODE(\

DEVICE_DELPROTECT, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

The driver’s IRP_MJ_DEVICE_CONTROL doesn’t have anything we didn’t see before. Here is its complete
code:

NTSTATUS OnDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto status = STATUS_INVALID_DEVICE_REQUEST;

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto& dic = irpSp->Parameters.DeviceIoControl;

auto len = 0U;

switch (dic.IoControlCode) {

case IOCTL_DELPROTECT_SET_EXTENSIONS:

auto ext = (WCHAR*)Irp->AssociatedIrp.SystemBuffer;

auto inputLen = dic.InputBufferLength;

if (ext == nullptr ||

inputLen < sizeof(WCHAR) * 2 ||

ext[inputLen / sizeof(WCHAR) - 1] != 0) {

status = STATUS_INVALID_PARAMETER;

break;

}

if (g_State.Extentions.MaximumLength <

inputLen - sizeof(WCHAR)) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 413

//

// allocate a new buffer to hold the extensions

//

auto buffer = ExAllocatePool2(POOL_FLAG_PAGED,

inputLen, DRIVER_TAG);

if (buffer == nullptr) {

status = STATUS_INSUFFICIENT_RESOURCES;

break;

}

g_State.Extentions.MaximumLength = (USHORT)inputLen;

//

// free the old buffer

//

ExFreePool(g_State.Extentions.Buffer);

g_State.Extentions.Buffer = (PWSTR)buffer;

}

UNICODE_STRING ustr;

RtlInitUnicodeString(&ustr, ext);

//

// make sure the extensions are uppercase

//

RtlUpcaseUnicodeString(&ustr, &ustr, FALSE);

memcpy(g_State.Extentions.Buffer, ext, len = inputLen);

g_State.Extentions.Length = (USHORT)inputLen;

status = STATUS_SUCCESS;

break;

}

return CompleteRequest(Irp, status, len);

}

Testing the Modified Driver

Earlier, we tested the driver by deleting files using cmd.exe, but that may not be generic enough, so we
better create our own test application. There are three ways to delete a file with user mode APIs:

1. Call the DeleteFile function.
2. Call CreateFile with the flag FILE_FLAG_DELETE_ON_CLOSE.
3. Call SetFileInformationByHandle on an open file.

Internally, there are only two ways to delete a file - IRP_MJ_CREATE with the FILE_DELETE_ON_CLOSE
flag and IRP_MJ_SET_INFORMATION with FileDispositionInformation. Clearly, in the above list, item
(2) corresponds to the first option and item (3) corresponds to the second option. The only mystery left is
DeleteFile - how does it delete a file?

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 414

From the driver’s perspective it does not matter at all, since it must map to one of the two options the
driver handles.

We’ll create a console application project named DelTest, for which the usage text should be something
like this:

c:\book>deltest

Usage: deltest.exe <method> <filename>

Method: 1=DeleteFile, 2=delete on close, 3=SetFileInformation.

Let’s examine the user mode code for each of these methods (assuming filename is a variable pointing to
the file name provided in the command line).

Using DeleteFile is trivial:

BOOL success = DeleteFile(filename);

Opening the file with the delete-on-close flag can be achieved with the following:

HANDLE hFile = CreateFile(filename, DELETE, 0, nullptr, OPEN_EXISTING,

FILE_FLAG_DELETE_ON_CLOSE, nullptr);

CloseHandle(hFile);

When the handle is closed, the file should be deleted (if the driver does not prevent it!)

Lastly, using SetFileInformationByHandle:

FILE_DISPOSITION_INFO info;

info.DeleteFile = TRUE;

HANDLE hFile = CreateFile(filename, DELETE, 0, nullptr,

OPEN_EXISTING, 0, nullptr);

BOOL success = SetFileInformationByHandle(hFile, FileDispositionInfo,

&info, sizeof(info));

CloseHandle(hFile);

The Directory Hiding Driver

The next driver we’ll look at is more complex than the DelProtect driver. The Directory Hiding driver will
hid a directory from the file system, making it not just inaccessible, but also “un-listable” - it will not be
visible in directory listings (via the dir shell command, File Explorer, or whatever). We’ll implement the
driver in two phases. In the first phase, we’ll make a directory (or directories) of choice inaccessible. In the
second phase, we’ll make it invisible.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 415

Managing Directories

For the purpose of this driver, we’ll hold on to a list of directories which should be hidden. This list can
implemented in several ways, such as the linked-lists we have used in previous drivers. To make it more
interesting, we’ll use a dynamic array of string objects, both of which are part of the Kernel Template
Library (KTL), described in Appendix A, and available as part of the book’s downloads. The idea is to
build a reusable library, containing many of the expected types and functions as are available in the user-
mode standard C++ library. The KTL is not nearly as broad as the C++ STL, and it’s not supposed to be.
What it should be, is convenient reusable code for use in driver projects.

To start of, we’ll create an Empty WDM Driver project, as before, named KHide. The driver’s state is going
to be stored in the following structure declared in MiniFilter.h:

#include <ktl.h>

struct FilterState {

FilterState();

~FilterState();

PFLT_FILTER Filter;

Vector<WString<PoolType::NonPaged>, PoolType::NonPaged> Files;

ExecutiveResource Lock;

PDRIVER_OBJECT DriverObject;

};

extern FilterState* g_State;

The ktl.h header contains all the #includes from other headers, also parts of the KTL. The FilterState
structure has a default constructor and a destructor, whichmeans we cannot create a global variable of that
type and expect the constructor to be called (it won’t). Instead, we’ll use dynamic allocation to create an
instance, which will force calling the constructor. The KTL has overloads for the new and delete operators.

Themembers include an Executive Resource (a RAII wrapper over the corresponding kernel object), a mini-
filter handle, and a Vector of WStrings. A WString is a null-terminated, Unicode string, automatically
managed, with a convenient API. The Vector class is a templated type for holding a dynamic array of
any type, used with a WString here. Both types require the pool type to use internally provided with the
PoolType enumeration, which wraps the flags POOL_FLAGS, normally used with ExAllocatePool2:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 416

enum class PoolType : ULONG64 {

Paged = POOL_FLAG_PAGED,

NonPaged = POOL_FLAG_NON_PAGED,

NonPagedExecute = POOL_FLAG_NON_PAGED_EXECUTE,

CacheAligned = POOL_FLAG_CACHE_ALIGNED,

Uninitialized = POOL_FLAG_CACHE_ALIGNED,

ChargeQuota = POOL_FLAG_USE_QUOTA,

RaiseOnFailure = POOL_FLAG_RAISE_ON_FAILURE,

Session = POOL_FLAG_SESSION,

SpecialPool = POOL_FLAG_SPECIAL_POOL,

};

DEFINE_ENUM_FLAG_OPERATORS(PoolType);

A comprehensive coverage of the KTL is in Appendix A.

The constructor of FilterState should initialize the Executive Resource, while the destructor should
delete it:

FilterState::FilterState() {

Lock.Init();

Filter = nullptr;

}

FilterState::~FilterState() {

Lock.Delete();

}

The Vector will initialize itself in its default constructor (to an empty vector).

The DriverEntry function should be mostly familiar, using the same kind of code as theDelProtect driver
for initializing the file system mini-filter, and creating a CDO to allow managing directories to hide. Here
is the complete implementation (with some KdPrint calls removed):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 417

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

g_State = new (PoolType::NonPaged) FilterState;

if (!g_State)

return STATUS_NO_MEMORY;

PDEVICE_OBJECT devObj = nullptr;

NTSTATUS status;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Hide");

bool symLinkCreated = false;

do {

status = InitMiniFilter(DriverObject, RegistryPath);

if (!NT_SUCCESS(status))

break;

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Hide");

status = IoCreateDevice(DriverObject, 0, &devName,

FILE_DEVICE_UNKNOWN, 0, FALSE, &devObj);

if (!NT_SUCCESS(status))

break;

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status))

break;

symLinkCreated = true;

status = FltStartFiltering(g_State->Filter);

if (!NT_SUCCESS(status))

break;

} while (false);

if (!NT_SUCCESS(status)) {

if (g_State->Filter)

FltUnregisterFilter(g_State->Filter);

if (symLinkCreated)

IoDeleteSymbolicLink(&symLink);

if (devObj)

IoDeleteDevice(devObj);

if (g_State)

delete g_State;

return status;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 418

g_State->DriverObject = DriverObject;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = OnCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = OnDeviceControl;

//

// for testing purposes

//

#if DBG

g_State->Files.Add(L"c:\\Temp");

#endif

return status;

}

The last line before the return statement adds an example directory (c:\temp) to make it easier to test the
driver without the need to add a client, implement IRP_MJ_DEVICE_CONTROL, etc.

Initializing and registering the driver as a min-filter is very similar to the DelProtect driver. The operation
we’re concerned with is IRP_MJ_DIRECTORY_CONTROL, which is called when directory information is
required by a client. Here is the registration code (inMiniFilter.cpp):

FLT_OPERATION_REGISTRATION const callbacks[] = {

{ IRP_MJ_DIRECTORY_CONTROL, 0, OnPreDirectoryControl, nullptr },

{ IRP_MJ_OPERATION_END }

};

FLT_REGISTRATION const reg = {

sizeof(FLT_REGISTRATION),

FLT_REGISTRATION_VERSION,

0, // Flags

nullptr, // Context

callbacks, // Operation callbacks

HideUnload, // MiniFilterUnload

HideInstanceSetup, // InstanceSetup

HideInstanceQueryTeardown, // InstanceQueryTeardown

HideInstanceTeardownStart, // InstanceTeardownStart

HideInstanceTeardownComplete, // InstanceTeardownComplete

};

status = FltRegisterFilter(DriverObject, ®, &g_State->Filter);

This driver only requires a single operation to intercept, and a single pre-callback for the first phase of the
implementation.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 419

Phase 1: Prevent Access

All we need to do is implement the IRP_MJ_DIRECTORY_CONTROL pre-operation callback. The first or-
der of business is to allow kernel callers (no questions asked). Second, IRP_MJ_DIRECTORY_CONTROL has
actually three minor function codes, only one of which we care about in this driver: IRP_MN_QUERY_-
DIRECTORY, IRP_MN_NOTIFY_CHANGE_DIRECTORY, and IRP_MN_NOTIFY_CHANGE_DIRECTORY_EX. As you
probably have guessed, IRP_MN_QUERY_DIRECTORY is all we care about:

FLT_PREOP_CALLBACK_STATUS

OnPreDirectoryControl(PFLT_CALLBACK_DATA Data, PCFLT_RELATED_OBJECTS, PVOID*) {

if (Data->RequestorMode == KernelMode ||

Data->Iopb->MinorFunction != IRP_MN_QUERY_DIRECTORY)

return FLT_PREOP_SUCCESS_NO_CALLBACK;

We expect the client to provide directory names from the usual user-mode vantage point using drive letters
(often referred to as DOS paths), such as c:\temp. The kernel, however, provides names which are in device
form (e.g. \Device\HarddiskVolume4\Temp). We can convert the user-provided paths to device form before
storing them in the vector, or convert the device form path received from the filter manager to a DOS path.
We’ll take the latter approach in this driver (for versatility).

The term “DOS path” is a historic one, because of the “drive-colon” format used originally in DOS (Disk
Operating System).

There are a few ways we could use to convert the device path to a DOS path. Probably the simplest option
is the API IoQueryFileDosDeviceName:

NTSTATUS IoQueryFileDosDeviceName(

In PFILE_OBJECT FileObject,

Out POBJECT_NAME_INFORMATION *ObjectNameInformation);

It requires a FILE_OBJECT and returns a POBJECT_NAME_INFORMATION, filling it with the name. The latter
structure is just a glorified UNICODE_STRING:

typedef struct _OBJECT_NAME_INFORMATION {

UNICODE_STRING Name;

} OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION;

The data is allocated dynamically and must be freed by calling ExFreePool.

At this point, we have the directory that needs querying - let’s convert it to a DOS path so we can easily
compare it to our stored directory list:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 420

POBJECT_NAME_INFORMATION nameInfo;

if (!NT_SUCCESS(IoQueryFileDosDeviceName(FltObjects->FileObject, &nameInfo)))

return FLT_PREOP_SUCCESS_NO_CALLBACK;

Nowwe can acquire the Executive Resource in shared mode (just reading data), and compare the directory
to any one in the list. If found, we can fail the request:

UNICODE_STRING path;

auto status = FLT_PREOP_SUCCESS_WITH_CALLBACK;

{

SharedLocker locker(g_State->Lock);

for (auto& name : g_State->Files) {

name.GetUnicodeString(path);

if (RtlEqualUnicodeString(&path, &nameInfo->Name, TRUE)) {

//

// found directory. fail request

//

Data->IoStatus.Status = STATUS_NOT_FOUND;

Data->IoStatus.Information = 0;

status = FLT_PREOP_COMPLETE;

break;

}

}

}

ExFreePool(nameInfo);

return status;

}

The SharedLocker class is a RAII wrapper around acquiring/releasing a shared lock of an Executive
Resource. The Vector class is used here with the range-based for feature of C++ 11 (and later). This
works, because Vector implements a begin and end methods (see Appendix A for more information).
A UNICODE_STRING is initialized to prepare calling RtlEqualUnicodeString which allows comparing
two UNICODE_STRING objects for equality, optionally without case sensitivity (TRUE in the last argument),
which is what we want. If a match is found, we set the final status of the IRP to STATUS_NOT_FOUND
(technically any failure status would work), and change the final return value from the function to FLT_-
PREOP_COMPLETE, preventing any further propagation to lower-layered filters.

The driver is installed in the normal way:

c:\>sc create hide type= filesys binPath= c:\test\khide.sys

And is started just like any other file system mini-filter:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 421

c:\>fltmc load hide

Now trying to navigate to a hidden directory (e.g c:\temp) works, but the directory is always reported
empty:

C:\Temp>dir

Volume in drive C has no label.

Volume Serial Number is E041-5DB0

Directory of C:\Temp

File Not Found

Phase 2: Making a Directory Invisible

When directory listing requested using IRP_MJ_DIRECTORY_CONTROL, it’s the job of the file system driver
to provide the list. One way to hide a directory (or a file for that matter), is to assume the role of the file
system and produce such a listing, that would have the directory removed from it. This is possible, but
difficult. A better option is to let the file system driver “do its thing”, and then tweak the returned result
before letting it bubble up to the client.

We’ll use the second approach. To that end, we need to respond to IRP_MJ_DIRECTORY_CONTROL after it
has been processed by the I/O stack. This means we need a post callback. The driver’s mini-filter callback
registration structure changes to the following:

FLT_OPERATION_REGISTRATION const callbacks[] = {

{ IRP_MJ_DIRECTORY_CONTROL, 0,

OnPreDirectoryControl, OnPostDirectoryControl },

{ IRP_MJ_OPERATION_END }

};

The post-callback does the heavy lifting. The idea is to look for a parent directory that contains the
directory we wish to hide, and if this is the case - remove our directory name from the list somehow
before it returns to the caller.

Let’s start, as before, but letting kernel callers have their way without interference:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 422

FLT_POSTOP_CALLBACK_STATUS

OnPostDirectoryControl(PFLT_CALLBACK_DATA Data,

PCFLT_RELATED_OBJECTS FltObjects,

PVOID, FLT_POST_OPERATION_FLAGS flags) {

UNREFERENCED_PARAMETER(FltObjects);

if (Data->RequestorMode == KernelMode ||

Data->Iopb->MinorFunction != IRP_MN_QUERY_DIRECTORY ||

(flags & FLTFL_POST_OPERATION_DRAINING))

return FLT_POSTOP_FINISHED_PROCESSING;

If the caller is from kernel mode, or the request is not “query directory” (IRP_MN_QUERY_DIRECTORY), we
let the request continue normally. The last check is an optimization that looks at the Flags argument,
where the value FLTFL_POST_OPERATION_DRAINING indicates the mini-filter instance is being detached,
so no point in doing anything.

The information we get with IRP_MJ_DIRECTORY_CONTROL and IRP_MN_QUERY_DIRECTORY in the FLT_-
PARAMETERS union looks like the following:

struct {

ULONG Length;

PUNICODE_STRING FileName;

FILE_INFORMATION_CLASS FileInformationClass;

ULONG POINTER_ALIGNMENT FileIndex;

PVOID DirectoryBuffer;

PMDL MdlAddress;

} QueryDirectory;

FileInformationClass is the type of request. The FILE_INFORMATION_CLASS enumeration is a big one,
but only a few are relevant to a query directory request. The docs list 8 of those. For each one, the
DirectoryBuffermember points to a different kind of structure. Table 12-4 shows the enumeration values
and the corresponding types as defined in the docs.

Table 12-4: Query directory file information class values and data

Enumeration Structure Type

FileBothDirectoryInformation FILE_BOTH_DIR_INFORMATION

FileDirectoryInformation FILE_DIRECTORY_INFORMATION

FileFullDirectoryInformation FILE_FULL_DIR_INFORMATION

FileIdBothDirectoryInformation FILE_ID_BOTH_DIR_INFORMATION

FileIdFullDirectoryInformation FILE_ID_FULL_DIR_INFORMATION

FileNamesInformation FILE_NAMES_INFORMATION

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 423

Table 12-4: Query directory file information class values and data

Enumeration Structure Type

FileObjectIdInformation FILE_OBJECTID_INFORMATION

FileReparsePointInformation FILE_REPARSE_POINT_INFORMATION

All the above data structures are similar in spirit, but not identical. Let’s take one example:

typedef struct _FILE_DIRECTORY_INFORMATION {

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

_Field_size_bytes_(FileNameLength) WCHAR FileName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

All the structures listed in table 12-4 start with a NextEntryOffset member that points to the next same-
kind structure. Its value must be added to the current pointer to this structure. The last instance has the
NextEntryOffset set to zero, indicating there are no more instances. This idea is depicted in figure 12-8.

Figure 12-8: Directory information structures

The interesting part of the specific structure is the FileName member. This has the file or directory name
for which some information is required or provided. This is not a full path - rather, it’s just the final name
relative to the immediate parent directory. For example, if a query directory is sent to a directory named
c:\Dir1\Dir2, the FileName members would hold names like file1.txt, mydir (directory), and so on.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 424

All the details above mean that in order to hide a directory from a listing, we first need to check if the
parent directory being queried is a parent of any of the directories we are supposed to hide. Then we need
to traverse the structure layout as described, looking for the directory name (its final component). if we
find it, we can hide the directory by pointing the previous NextEntryOffset to the next one, skipping
this one structure we want to “hide”. This is depicted in figure 12-9.

Figure 12-9: Directory “Dir1” is being hidden”

The example above is using FILE_DIRECTORY_INFORMATION, but we have to cotend with all other 7
possible structures. The problem is that the FileName member is not located at the same offset in these
structures! How can we deal with that in a sensible way?

Fortunately, in recent WDK versions, the <ntifs.h> header (where these structures are defined, and is in-
cluded by FltKernel.h) provides several convenience macros that provide the offsets to key (common) mem-
bers in these structures, namely NextEntryOffset (which is always zero in current versions), FileName,
and FileNameLength. These macros initialize a structure named FILE_INFORMATION_DEFINITION to hold
these offsets along with the corresponding FileInformationClass:

typedef struct _FILE_INFORMATION_DEFINITION {

FILE_INFORMATION_CLASS Class;

ULONG NextEntryOffset;

ULONG FileNameLengthOffset;

ULONG FileNameOffset;

} FILE_INFORMATION_DEFINITION, *PFILE_INFORMATION_DEFINITION;

Here is a definition for use with FILE_DIRECTORY_INFORMATION:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 425

// from ntifs.h

#define FileDirectoryInformationDefinition { \

FileDirectoryInformation, \

FIELD_OFFSET(FILE_DIRECTORY_INFORMATION, NextEntryOffset), \

FIELD_OFFSET(FILE_DIRECTORY_INFORMATION, FileName), \

FIELD_OFFSET(FILE_DIRECTORY_INFORMATION, FileNameLength) \

}

Astute readers may notice a bug here. I didn’t at first, as I assumed the definitions fromWDK headers are
correct. Can you spot the error?

The offsets of FileName and FileNameLength are in reverse order!

I reported the bug, but not sure if and when that will be fixed. It may very well be the case that the header
you’re using is already fixed. Please be aware that the next code snippets assume the error exists, and swap
the usage of FileNameLengthOffset and FileNameOffset.

Back to the QueryDirectory structure. The Length member is the total length of the data pointed to
by DirectoryBuffer. It’s not usually needed, but can serve as a sanity check. The MdlAddress member
provides an optional MDL that points to where DirectoryBuffer does. The docs indicate that the MDL
should be used if provided (by calling MmGetSystemAddressForMdlSafe). The DirectoryBuffer address,
by the way, points to user-mode memory when the query request is coming from user mode (such as from
Explorer.exe).

Now that we have all the pieces for the plan, we can go ahead and implement the rest of the post-IRP_-
MJ_DIRECTORY_CONTROL callback.

We’ll continue by setting up an array of the expected structures and information classes using the macros
provided like FileDirectoryInformationDefinition:

static const FILE_INFORMATION_DEFINITION defs[] = {

FileFullDirectoryInformationDefinition,

FileBothDirectoryInformationDefinition,

FileDirectoryInformationDefinition,

FileNamesInformationDefinition,

FileIdFullDirectoryInformationDefinition,

FileIdBothDirectoryInformationDefinition,

FileIdExtdDirectoryInformationDefinition,

FileIdGlobalTxDirectoryInformationDefinition

};

Each item in the array is a FILE_INFORMATION_DEFINITION instance holding the correct offsets to locate
NextEntryOffset, FileName, and FileNameLength in each corresponding structure.

Now we need to search and locate the actual information class handed to us:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 426

const FILE_INFORMATION_DEFINITION* actual = nullptr;

for(auto const& def : defs)

if (def.Class == params.FileInformationClass) {

actual = &def;

break;

}

if (actual == nullptr) {

KdPrint((DRIVER_PREFIX "Uninteresting info class (%u)\n",

params.FileInformationClass));

return FLT_POSTOP_FINISHED_PROCESSING;

}

The loop above might seemweird, but C++ 11 and later allow using range-based for for iterating through
fixed sized arrays, as is the case here with defs. If that feels awkward, feel free to change to a class for
loop with an index.

The actual pointer now points to the correct FILE_INFORMATION_DEFINITION that we need to use. Next,
we need to garb the DOS path of the queried directory, and start comparing it to our list of directory
parents:

POBJECT_NAME_INFORMATION dosPath = nullptr;

IoQueryFileDosDeviceName(FltObjects->FileObject, &dosPath);

if (dosPath) {

PUCHAR base = nullptr;

//

// use MDL if available

//

if (params.MdlAddress)

base = (PUCHAR)MmGetSystemAddressForMdlSafe(params.MdlAddress,

NormalPagePriority);

if (!base)

base = (PUCHAR)params.DirectoryBuffer;

if (base == nullptr) {

//

// the doc says DirectoryBuffer could be NULL

//

return FLT_POSTOP_FINISHED_PROCESSING;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 427

SharedLocker locker(g_State->Lock);

for (auto& name : g_State->Files) {

//

// look for a backslash so we can remove the final component

//

auto bs = wcsrchr(name, L'\\');

if (bs == nullptr)

continue;

UNICODE_STRING copy;

copy.Buffer = name.Data(); // C-pointer to the characters

copy.Length = USHORT(bs - name + 1) * sizeof(WCHAR);

//

// copy now points to the parent directory

// by making its Length shorter

//

if (copy.Length == sizeof(WCHAR) * 2) // Drive+colon only (e.g. C:)

copy.Length += sizeof(WCHAR); // add the backslash

if (RtlEqualUnicodeString(©, &dosPath->Name, TRUE)) {

To clarify the above code, suppose the DOS directory is c:\Dir1\Dir2. This means some client is asking
about the contents in this directory. If one of the directories to hide is c:\Dir1\Dir2\Dir3 (stored in one of
the strings in our vector), we have to comapre with its parent, which in this case should succeed.

The parent matches the directory queried, which means we have to iterate through the results, locate
the final component in the list (Dir3 in the above example), and “hide” the directory by changing the
NextEntryOffset as described earlier. Here goes:

ULONG nextOffset = 0;

PUCHAR prev = nullptr;

auto str = bs + 1; // the final component beyond the backslash

do {

//

// due to a current bug in the definition of FILE_INFORMATION_DEFINITION

// the file name and length offsets are switched in the definitions

// of the macros that initialize FILE_INFORMATION_DEFINITION

//

auto filename = (PCWSTR)(base + actual->FileNameLengthOffset);

auto filenameLen = *(PULONG)(base + actual->FileNameOffset);

nextOffset = *(PULONG)(base + actual->NextEntryOffset);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 428

if (filenameLen && _wcsnicmp(str, filename,

filenameLen / sizeof(WCHAR)) == 0) {

//

// found it! hide it and exit

//

if (prev == nullptr) {

//

// first entry - move the buffer to the next item

//

params.DirectoryBuffer = base + nextOffset;

//

// notify the Filter Manager

//

FltSetCallbackDataDirty(Data);

}

else {

//

// Hide the directory!

//

*(PULONG)(prev + actual->NextEntryOffset) += nextOffset;

}

break;

}

prev = base;

base += nextOffset;

} while (nextOffset != 0);

break;

A few notes on the above code:

• We have to keep track of the previous pointer, so that we can manipulate it from the current node
we’re traversing. This is the role of the prev local variable.

• prev is defined as PUCHAR (pointer to unsigned characater - a byte) to make sure adding any offset is
interpreted as bytes. Remember, adding a number to a pointer advances the pointer by the number
times the size of the item being pointed to. Same reasoning applies to the base variable.

• If the directory we need to hide happens to be the first, we need to change the DirectoryBuffer
member itself (move it to the second item), and that requires notifying the filter manager by calling
FltSetCallbackDataDirty. It can’t really happen in this example, as the first item returned is
always the “.” (dot) directory, referring to the current directory, but it’s good to know about this
practice that may be needed in other cases.

All that’s left to do is free the DOS path and return FLT_POSTOP_FINISHED_PROCESSING from the callback.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 429

The full code of the callback is presented here for convenience (with some of the earlier comments re-
moved):

FLT_POSTOP_CALLBACK_STATUS

OnPostDirectoryControl(PFLT_CALLBACK_DATA Data,

PCFLT_RELATED_OBJECTS FltObjects, PVOID,

FLT_POST_OPERATION_FLAGS flags) {

UNREFERENCED_PARAMETER(FltObjects);

if (Data->RequestorMode == KernelMode ||

Data->Iopb->MinorFunction != IRP_MN_QUERY_DIRECTORY ||

(flags & FLTFL_POST_OPERATION_DRAINING))

return FLT_POSTOP_FINISHED_PROCESSING;

auto& params = Data->Iopb->Parameters.DirectoryControl.QueryDirectory;

static const FILE_INFORMATION_DEFINITION defs[] = {

FileFullDirectoryInformationDefinition,

FileBothDirectoryInformationDefinition,

FileDirectoryInformationDefinition,

FileNamesInformationDefinition,

FileIdFullDirectoryInformationDefinition,

FileIdBothDirectoryInformationDefinition,

FileIdExtdDirectoryInformationDefinition,

FileIdGlobalTxDirectoryInformationDefinition

};

const FILE_INFORMATION_DEFINITION* actual = nullptr;

for(auto const& def : defs)

if (def.Class == params.FileInformationClass) {

actual = &def;

break;

}

if (actual == nullptr) {

return FLT_POSTOP_FINISHED_PROCESSING;

}

POBJECT_NAME_INFORMATION dosPath = nullptr;

IoQueryFileDosDeviceName(FltObjects->FileObject, &dosPath);

if (dosPath) {

PUCHAR base = nullptr;

if (params.MdlAddress)

base = (PUCHAR)MmGetSystemAddressForMdlSafe(params.MdlAddress,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 430

NormalPagePriority);

if (!base)

base = (PUCHAR)params.DirectoryBuffer;

if (base == nullptr) {

return FLT_POSTOP_FINISHED_PROCESSING;

}

SharedLocker locker(g_State->Lock);

for (auto& name : g_State->Files) {

//

// look for a backslash so we can remove the final component

//

auto bs = wcsrchr(name, L'\\');

if (bs == nullptr)

continue;

UNICODE_STRING copy;

copy.Buffer = name.Data();

copy.Length = USHORT(bs - name + 1) * sizeof(WCHAR);

//

// copy now points to the parent directory

// by making its Length shorter

//

if (copy.Length == sizeof(WCHAR) * 2) // Drive+colon only

copy.Length += sizeof(WCHAR); // add the backslash

if (RtlEqualUnicodeString(©, &dosPath->Name, TRUE)) {

ULONG nextOffset = 0;

PUCHAR prev = nullptr;

auto str = bs + 1; // the final component

do {

//

// due to a current bug in the definition of FILE_INFORMATION_DEFINITION

// the file name and length offsets are switched in the definitions

// of the macros that initialize FILE_INFORMATION_DEFINITION

//

auto filename = (PCWSTR)(base +

actual->FileNameLengthOffset);

auto filenameLen = *(PULONG)(base +

actual->FileNameOffset);

nextOffset = *(PULONG)(base + actual->NextEntryOffset);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 431

if (filenameLen && _wcsnicmp(str, filename,

filenameLen / sizeof(WCHAR)) == 0) {

//

// found it! hide it and exit

//

if (prev == nullptr) {

//

// first entry

//

params.DirectoryBuffer = base + nextOffset;

FltSetCallbackDataDirty(Data);

}

else {

*(PULONG)(prev + actual->NextEntryOffset)

+= nextOffset;

}

break;

}

prev = base;

base += nextOffset;

} while (nextOffset != 0);

break;

}

}

ExFreePool(dosPath);

}

return FLT_POSTOP_FINISHED_PROCESSING;

}

Here is a directory listing when c:\temp is supposed to be hidden (before and after):

C:\>dir

Volume in drive C has no label.

Volume Serial Number is E041-5DB0

Directory of C:\

09/24/2022 02:42 PM 106,784 appverifUI.dll

10/02/2022 01:05 PM <DIR> DBG

10/30/2022 01:07 PM <DIR> Demos

10/10/2022 05:10 PM <DIR> dev

04/27/2022 07:53 AM <DIR> Program Files

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 432

10/18/2022 05:51 PM <DIR> Program Files (x86)

10/29/2022 01:42 PM <DIR> symbols

10/29/2022 10:43 PM <DIR> Temp

11/18/2021 05:16 AM <DIR> Users

09/24/2022 02:42 PM 61,376 vfcompat.dll

10/29/2022 03:29 PM <DIR> Windows

3 File(s) 180,448 bytes

13 Dir(s) 35,709,960,192 bytes free

C:\>fltmc load hide

C:\>dir

Volume in drive C has no label.

Volume Serial Number is E041-5DB0

Directory of C:\

09/24/2022 02:42 PM 106,784 appverifUI.dll

10/02/2022 01:05 PM <DIR> DBG

10/30/2022 01:07 PM <DIR> Demos

10/10/2022 05:10 PM <DIR> dev

04/27/2022 07:53 AM <DIR> Program Files

10/18/2022 05:51 PM <DIR> Program Files (x86)

10/29/2022 01:42 PM <DIR> symbols

11/18/2021 05:16 AM <DIR> Users

09/24/2022 02:42 PM 61,376 vfcompat.dll

10/29/2022 03:29 PM <DIR> Windows

3 File(s) 180,448 bytes

12 Dir(s) 35,707,621,376 bytes free

You can still navigate to the Temp directory with cd temp, but any dir inside would be empty. If you
want to prevent that, you can handle the pre-callback for IRP_MJ_CREATE and fail access to any of the
managed directories. I’ll leave that as an exercise for the reader.

Contexts

In some scenarios it is desirable to attach some data to file system entities such as volumes and files. The
filter manager provides this capability through contexts. A context is a data structure provided by the
mini-filter driver that can be set and retrieved for any file system object. These contexts are connected to
the objects they are set on, for as long as these objects are alive.

To use contexts, the driver must declare beforehand what contexts it may require and for what type of
objects. This is done as part of the registration structure FLT_REGISTRATION. The ContextRegistration

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 433

field may point to an array of FLT_CONTEXT_REGISTRATION structures, each of which defines information
for a single context. FLT_CONTEXT_REGISTRATION is declared as follows:

typedef struct _FLT_CONTEXT_REGISTRATION {

FLT_CONTEXT_TYPE ContextType;

FLT_CONTEXT_REGISTRATION_FLAGS Flags;

PFLT_CONTEXT_CLEANUP_CALLBACK ContextCleanupCallback;

SIZE_T Size;

ULONG PoolTag;

PFLT_CONTEXT_ALLOCATE_CALLBACK ContextAllocateCallback;

PFLT_CONTEXT_FREE_CALLBACK ContextFreeCallback;

PVOID Reserved1;

} FLT_CONTEXT_REGISTRATION, *PFLT_CONTEXT_REGISTRATION;

Here is a description of the above fields:

• ContextType identifies the object type this context would be attached to. The FLT_CONTEXT_TYPE
is typedefed as USHORT and can have one of the following values:

#define FLT_VOLUME_CONTEXT 0x0001

#define FLT_INSTANCE_CONTEXT 0x0002

#define FLT_FILE_CONTEXT 0x0004

#define FLT_STREAM_CONTEXT 0x0008

#define FLT_STREAMHANDLE_CONTEXT 0x0010

#define FLT_TRANSACTION_CONTEXT 0x0020

#if FLT_MGR_WIN8

#define FLT_SECTION_CONTEXT 0x0040

#endif // FLT_MGR_WIN8

#define FLT_CONTEXT_END 0xffff

As can be seen from the above definitions, a context can be attached to a volume, filter instance, file, stream,
stream handle, transaction and section (on Windows 8 and later). The last value is a sentinel for indicating
this is the end of the list of context definitions. The aside “Context Types” contains more information on
the various context types.

Context Types
The filter manager supports several types of contexts:

• Volume contexts are attached to volumes, such as a disk partition (C:, D:, etc.).
• Instance contexts are attached to filter instances. A mini-filter can have several instances running,
each attached to a different volume.

• File contexts can be attached to files in general (and not a specific file stream).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 434

• Stream contexts can be attached to file streams, supported by some file systems, such as NTFS. File
systems that support a single stream per file (such as FAT) treat stream contexts as file contexts.

• Stream handle contexts can be attached to a stream on a per FILE_OBJECT.
• Transaction contexts can be attached to a transaction that is in progress. Specifically, the NTFS
file system supports transactions, and such so a context can be attached to a running transaction.

• Section contexts can be attached to section (file mapping) objects created with the function
FltCreateSectionForDataScan (beyond the scope of this chapter).

Not all types of contexts are supported on all file systems. The filter manager provides APIs to
query this dynamically if desired (for some context types), such as FltSupportsFileContexts,
FltSupportsFileContextsEx and FltSupportsStreamContexts.

Context size can be fixed or variable. If fixed size is desired, it’s specified in the Size field of FLT_CONTEXT_-
REGISTRATION. For a variable sized context, a driver specifies the special value FLT_VARIABLE_SIZED_-
CONTEXTS (-1). Using fixed-size contexts is more efficient, because the filter manager can use lookaside
lists for managing allocations and deallocations.

The pool tag is specified with the PoolTag field of FLT_CONTEXT_REGISTRATION. This is the tag the filter
manager will use when actually allocating the context. The next two fields are optional callbacks where
the driver provides the allocation and deallocation functions. If these are non-NULL, then the PoolTag and
Size fields are meaningless and not used.

Here is an example of building an array of context registration structure:

struct MyContext {

//...

};

const FLT_CONTEXT_REGISTRATION ContextRegistration[] = {

{ FLT_FILE_CONTEXT, 0, nullptr, sizeof(MyContext), ’dcba',

nullptr, nullptr, nullptr },

{ FLT_CONTEXT_END }

};

Managing Contexts

To actually use a context, a driver first needs to allocate it by calling FltAllocateContext, defined like
so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 435

NTSTATUS FltAllocateContext (

In PFLT_FILTER Filter,

In FLT_CONTEXT_TYPE ContextType,

In SIZE_T ContextSize,

In POOL_TYPE PoolType,

Outptr PFLT_CONTEXT *ReturnedContext);

The Filter parameter is the filter’s opaque pointer returned by FltRegisterFilter but also available
in the FLT_RELATED_OBJECTS structure provided to all callbacks. ContextType is one of the supported
context macros shown earlier, such as FLT_FILE_CONTEXT. ContextSize is the requested context size in
bytes (must be greater than zero). PoolType can be PagedPool or NonPagedPool, depending on what
IRQL the driver is planning to access the context (for volume contexts, NonPagedPool must be specified).
Finally, the ReturnedContext field stores the returned allocated context; PFLT_CONTEXT is typedefed as
PVOID.

Once the context has been allocated, the driver can store in that data buffer anything it wishes. Then
it must attach the context to an object (this is the reason to create the context in the first place) using
one of several functions named FltSetXxxContext where “Xxx” is one of File, Instance, Volume,
Stream, StreamHandle, or Transaction. The only exception is a section context which is set with
FltCreateSectionForDataScan. Each of the FltSetXxxContext functions has the same generic makeup,
shown here for the File case:

NTSTATUS FltSetFileContext (

In PFLT_INSTANCE Instance,

In PFILE_OBJECT FileObject,

In FLT_SET_CONTEXT_OPERATION Operation,

In PFLT_CONTEXT NewContext,

Outptr PFLT_CONTEXT *OldContext);

The function accepts the required parameters for the context at hand. In this file case it’s the instance
(actually needed in any set context function) and the file object representing the file that should carry this
context. The Operation parameter can be either FLT_SET_CONTEXT_REPLACE_IF_EXISTS or FLT_SET_-
CONTEXT_KEEP_IF_EXISTS, which are pretty self explanatory.

NewContext is the context to set, and OldContext is an optional parameter that can be used to retrieve the
previous context with the operation set to FLT_SET_CONTEXT_REPLACE_IF_EXISTS.

Contexts are reference counted. Allocating a context (FltAllocateContext) and setting a context in-
crement its reference count. The opposite function is FltReleaseContext that must be called a match-
ing number of times to make sure the context is not leaked. Although there is context delete function
(FltDeleteContext), it’s usually not needed as the filter manager will tear down the context once the file
system object holding it is destroyed.

You must pay careful attention to context management, otherwise you may find that the driver
cannot be unloaded because a positive reference counted context is still alive, and the file system
object it’s attached to has not yet been deleted (such as a file or volume). Clearly, this suggests
a RAII context handling class could be useful.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 436

The typical scenario would be to allocate a context, fill it, set it on the relevant object and then call
FltReleaseContext once, keeping a reference count of one for the context. We will see a practical use of
contexts in the “File Backup Driver” section later in this chapter.

Once a context has been set on an object, other callbacks may wish to get a hold of that context. A set of
“get” functions provide access to the relevant context, all named in the form FltGetXxxContext, where
“Xxx” is one of File, Instance, Volume, Stream, StreamHandle, Transaction or Section. The “get”
functions increment the context’s reference count and so calling FltReleaseContext is necessary once
working with the context is completed.

Initiating I/O Requests

File system mini-filters sometimes need to initiate their own I/O operations. Normally, kernel code would
use functions such as ZwCreateFile or ZwOpenFile to open a handle to a file, and then issue I/O opera-
tions with functions such as ZwReadFile, ZwWriteFile, and ZwDeviceIoControlFile. Mini-filters don’t
usually use ZwCreateFile if they need to issue an I/O operation from one of the filter manager’s callbacks.
The reason has to do with the fact that the I/O operation will travel from the topmost filter down towards
the file system itself, meeting the current mini-filter on the way! This is a form of reentrancy, which can
cause issues if the driver is not careful. It also has a performance penalty because the entire file system
stack of filters must be traversed.

Instead, mini-filters use filter manager routines to issue I/O operations that are sent to the next lower
filter towards the file system, preventing reentrancy and a performance hit. These APIs start with Flt and
are similar in concept to the “Zw” variants. The main function to use is FltCreateFile (or its extended
friends, FltCreateFileEx and FltCreateFileEx2. Here is the prototype of FltCreateFile:

NTSTATUS FltCreateFile (

In PFLT_FILTER Filter,

_In_opt_ PFLT_INSTANCE Instance,

Out PHANDLE FileHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_opt_ PLARGE_INTEGER AllocationSize,

In ULONG FileAttributes,

In ULONG ShareAccess,

In ULONG CreateDisposition,

In ULONG CreateOptions,

_In_reads_bytes_opt_(EaLength) PVOID EaBuffer,

In ULONG EaLength,

In ULONG Flags);

Wow, that’s quite a mouthful - this function has many, many options. Fortunately, they are not difficult
to understand, but they must be set just right, or the call will fail with some weird status.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 437

As can be seen from the declaration, the first argument is the filter opaque address, used as the base layer
for I/O operations through the resulting file handle. The main return value is the FileHandle to the open
file if successful. We won’t go over all the various parameters (refer to the WDK documentation), but we
will use this function in the next section.

The extended function FltCreateFileEx has an additional output parameter which is the FILE_OBJECT
pointer created by the function. FltCreateFileEx2 has an additional input parameter of type IO_-
DRIVER_CREATE_CONTEXT used to specify additional information to the file system (refer to the WDK
documentation for more information).

With the returned handle, the driver can call the standard I/O APIs such as ZwReadFile, ZwWriteFile, etc.
The operationwill still target lower layers only. Alternatively, the driver can use the returned FILE_OBJECT
from FltCreateFileEx or FltCreateFileEx2 with functions such as FltReadFile and FltWriteFile
(the latter functions require the file object rather than a handle). The Flt functions are preferable, not just
for consistency, but also because they are slightly faster, as they receive the file object directly rather than
having a handle to look up to locate the file object.

Once the operation is done, FltClose must be called on the returned handle. If a file object was returned
as well, its reference count must be decremented with ObDereferenceObject to prevent a leak.

FltClose just calls ZwClose; it’s there for consistency.

The File Backup Driver

It’s time to put what we learned into practice, specifically using contexts and I/O operations from within
a mini-filter driver. The driver we’ll build provides automatic backup of a file whenever that file is opened
for write access, just before it’s being written. In this way, it’s possible to revert to the previous file state
if desired. In effect - we have a single backup of the file at any point.

An important question is, where will that backup be stored? It’s possible to create some “backup” directory
within the directory of the file, or perhaps create a root directory for all backups and re-create the backup
in the same folder structure of the original file, but starting from the backup root directory (the driver can
even hide this directory from general access). These options are fine, but for this demo we’ll use another
option: we’ll store the backup of the file within the file itself, in an alternate NTFS stream. So essentially,
the file would contain its own backup. Then, if needed, we can swap the contexts of the alternate stream
with the default stream, effectively restoring the file to its previous state.

We’ll start, as before, with an Empty WDM Driver project named KBackup, and delete the INF file. We’ll
use the same infrastructure we’ve used in the Delprotect and Hide drivers. DriverEntry is going to be
simpler this time, as we will not implement any CDO, and just use hard-coded rules to decide which files
should be backed up. Adding the required flexibility is saved as an exercise for the reader.

Here is DriverEntry:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 438

PFLT_FILTER g_Filter;

extern "C"

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)\

{

auto status = InitMiniFilter(DriverObject, RegistryPath);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Failed to init mini-filter (0x%X)\n", status));

return status;

}

status = FltStartFiltering(g_Filter);

if (!NT_SUCCESS(status)) {

FltUnregisterFilter(g_Filter);

}

return status;

}

We just register the filter by calling InitMiniFilter (do be describedmomentarily), and call FltStartFiltering
to get things going.

Registering the filter is mostly similar to earlier drivers, except that we’ll need some context to be kept for
files that we are going to back up. This means registration needs information about the context objects we
plan to use. Here is the context structure we’ll use:

struct FileContext {

Mutex Lock;

LARGE_INTEGER BackupTime;

BOOLEAN Written;

};

We’ll see the usage of this structure when we implement the callbacks. Registration is performed within
InitMiniFilter after the standard Registry entries have been written:

FLT_OPERATION_REGISTRATION const callbacks[] = {

{ IRP_MJ_CREATE, 0, nullptr, OnPostCreate },

{ IRP_MJ_WRITE, 0, OnPreWrite },

{ IRP_MJ_CLEANUP, 0, nullptr, OnPostCleanup },

{ IRP_MJ_OPERATION_END }

};

const FLT_CONTEXT_REGISTRATION context[] = {

{ FLT_FILE_CONTEXT, 0, nullptr, sizeof(FileContext), DRIVER_TAG },

{ FLT_CONTEXT_END }

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 439

};

FLT_REGISTRATION const reg = {

sizeof(FLT_REGISTRATION),

FLT_REGISTRATION_VERSION,

0, // Flags

context, // Context

callbacks, // Operation callbacks

BackupUnload, // MiniFilterUnload

BackupInstanceSetup, // InstanceSetup

BackupInstanceQueryTeardown, // InstanceQueryTeardown

BackupInstanceTeardownStart, // InstanceTeardownStart

BackupInstanceTeardownComplete, // InstanceTeardownComplete

};

status = FltRegisterFilter(DriverObject, ®, &g_Filter);

As far as contexts go, we’ll need a context attached to certain files, so FLT_FILE_CONTEXT is the type of
context required. As for callbacks, we need to intercept IRP_MJ_CREATE after a file object has been created
to see whether it’s an interesting file. IRP_MJ_WRITE is required, so we can write the contents of the file
right before its contents are modified. The IRP_MJ_CLEANUP operation will be used to clean up our context
objects.

Since we’ll be using alternate streams, only NTFS can be used, as it’s the only standard file system in
Windows to support alternate file streams. This means the driver should not attach to a volume not using
NTFS. We used similar code in earlier drivers to attach to NTFS volumes only:

NTSTATUS BackupInstanceSetup(

PCFLT_RELATED_OBJECTS FltObjects, FLT_INSTANCE_SETUP_FLAGS Flags,

DEVICE_TYPE VolumeDeviceType, FLT_FILESYSTEM_TYPE VolumeFilesystemType) {

UNREFERENCED_PARAMETER(FltObjects);

UNREFERENCED_PARAMETER(Flags);

UNREFERENCED_PARAMETER(VolumeDeviceType);

return VolumeFilesystemType == FLT_FSTYPE_NTFS

? STATUS_SUCCESS : STATUS_FLT_DO_NOT_ATTACH;

}

The Post Create Callback

Why do we even need a post-create callback? It is actually possible to write the driver without it, but it
will help demonstrate some features we haven’t seen before. Our goal for post-create is to allocate a file
context for files we’re interested in. For example, files that are not open for write access are of no interest
to the driver.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 440

Why do we use a post callback rather than a pre-callback? If a file open operation fails by some pre-create
of another driver, we don’t care. Only if the file is opened successfully, then our driver should examine
the file further.

First, we’ll bail if the flags argument indicates the instance is going away:

FLT_POSTOP_CALLBACK_STATUS OnPostCreate(

PFLT_CALLBACK_DATA Data, PCFLT_RELATED_OBJECTS FltObjects,

PVOID, FLT_POST_OPERATION_FLAGS Flags) {

if (Flags & FLTFL_POST_OPERATION_DRAINING)

return FLT_POSTOP_FINISHED_PROCESSING;

Next, let’s extract the parameters of the create operation, and check if the file in question is a directory:

const auto& params = Data->Iopb->Parameters.Create;

BOOLEAN dir = FALSE;

FltIsDirectory(FltObjects->FileObject, FltObjects->Instance, &dir);

FltIsDirectory is a simple function provided by the filter manager that returns TRUE in the last boolean
argument if the file object in question refers to a directory.

We are only interested in files opened for write access, not from kernel mode, and not new files (since new
files do not require backup). Also, directories are not interesting:

if (dir

|| Data->RequestorMode == KernelMode

|| (params.SecurityContext->DesiredAccess & FILE_WRITE_DATA) == 0

|| Data->IoStatus.Status != STATUS_SUCCESS

|| Data->IoStatus.Information == FILE_CREATED) {

//

// kernel caller, not write access or a new file - skip

//

return FLT_POSTOP_FINISHED_PROCESSING;

}

The IO_STATUS_BLOCK.Information in a post-create callback returns how the file was created/opened
(if the operation is successful). In the case of a new file being created, we don’t care, as there is nothing to
back up.

Check out the documentation for FLT_PARAMETERS for IRP_MJ_CREATE to get more information on the
details shown above.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 441

These kinds of checks are important, as they remove a lot of possible overhead for the driver. The driver
should always strive to do as little as possible to reduce its performance impact.

Now that we have a file we care about, we need to prepare a context object to be attached to the file. This
context will be needed later when we process the pre-write callback. First, we’ll extract the name of the
file. The driver needs to call the standard FltGetFileNameInformation. To make it a little easier and less
error-prone, we’ll use the RAII wrapper from the KTL.

Why don’t we just create a backup for the file right here and now? The file was opened for write access,
but there is no guarantee the client will actually write to the file; so we’ll wait until we get a pre-write
callback to perform the backup.

FilterFileNameInformation fileNameInfo(Data);

if (!fileNameInfo) {

return FLT_POSTOP_FINISHED_PROCESSING;

}

In this driver, we’ll backup files that have certain extensions - as mentioned already these will be hard
coded to simplify the coding that has little to do with file system mini-filters. We’ll call a helper function
to determine if we should care about this file:

if (!ShouldBackupFile(fileNameInfo))

return FLT_POSTOP_FINISHED_PROCESSING;

Here is the implementation of ShouldbackupFile:

bool ShouldBackupFile(FilterFileNameInformation& nameInfo) {

if(!NT_SUCCESS(nameInfo.Parse()))

return false;

//

// hard coded list of extensions

//

static PCWSTR extensions[] = {

L"txt", L"docx", L"doc", L"jpg", L"png"

};

for (auto ext : extensions)

if (nameInfo->Extension.Buffer != nullptr &&

_wcsnicmp(ext, nameInfo->Extension.Buffer, wcslen(ext)) == 0)

return true;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 442

return false;

}

FilterFileNameInformation::Parse calls FltParseFileNameInformation to get convenient access
to the extension. If the file extension is found, true is returned, indicating this file is interesting.

Back at the post-create callback - we’re not done. If the file has the right extension, but happends to use an
alternate stream, we’re not interested - we’re only interested in the default stream (what is considered the
“real” file’s contents). The previous call to FltParseFileNameInformation within ShouldBackupFile
gives back the stream, if any:

if (fileNameInfo->Stream.Length > 0)

return FLT_POSTOP_FINISHED_PROCESSING;

Finally, we are ready to allocate our file context and initialize it. Allocation requires a call toFltAllocateContext
and specifying the context type and other details:

FileContext* context;

auto status = FltAllocateContext(FltObjects->Filter,

FLT_FILE_CONTEXT, sizeof(FileContext), PagedPool,

(PFLT_CONTEXT*)&context);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to allocate file context (0x%08X)\n", status));

return FLT_POSTOP_FINISHED_PROCESSING;

}

FltAllocateContext allocates a context with the required size and returns a pointer to the allocated
memory. PFLT_CONTEXT is just a void* - we can cast it to whatever type we need. The returned context
memory is not zeroed out, so all members must be initialized properly.

Now we can initialize the context and set it on the file object:

context->Written = FALSE;

context->Lock.Init();

context->BackupTime.QuadPart = 0;

//

// set file context

//

status = FltSetFileContext(FltObjects->Instance,

FltObjects->FileObject,

FLT_SET_CONTEXT_REPLACE_IF_EXISTS,

context, nullptr);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 443

Why do we need this context in the first place? A typical client opens a file for write access and then calls
WriteFile potentially multiple times. Before the first call to WriteFile the driver should back up the
existing content of the file. This is why we need the boolean Written field - to make sure we make the
backup just once before the first write attempt. This flag starts as FALSE and will turn TRUE after the first
write operation. This turn of events is depicted in Figure 12-10.

Figure 12-10: Client and driver operations for common write sequence

Why do we need a mutex? We need some synchronization in an unlikely, but possible case, where more
than one thread within the client process write to the same file at roughly the same time. In such a case,
we need to make sure we make a single backup of the data, otherwise our backup may become corrupted.
In all examples thus far where we needed such synchronization, we used a fast mutex, but here we’re
using a standard mutex. Why? The driver will perform I/O operations while holding the (fats) mutex.
I/O operations can only performed at IRQL PASSIVE_LEVEL (0). An acquired fast mutex raises IRQL to
APC_LEVEL (1), which will cause a deadlock if I/O APIs are used.

The deadlock occurs because I/O operations are completed by sending a special kernel APC to the original
thread. If that thread is waiting on a dast mutex (at IRQL APC_LEVEL=1), it will never run the APC (all
APCs are blocked while the IRQL is APC_LEVEL), thus a deadlock.

The Mutex class is the same one shown in chapter 6 (part of the KTL as well). The BackupTime member
is zeroed out and will be modified when we back up the file. In the current version of the driver, this
information is not used, but it could be written to another stream in the file as some sort of “metadata”.

Finally, FltReleaseContext must be called, which if all is well, sets the internal reference count of the
context to 1 (+1 for allocate, +1 for set, -1 for release):

FltReleaseContext(context);

return FLT_POSTOP_FINISHED_PROCESSING;

}

The Pre-Write Callback

The pre-write callback’s job is to make a copy of the file data just before the actual write operation
is allowed to go through; this is why a pre-callback is needed here, otherwise in the post-callback the
operation would already have completed.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 444

We start by retrieving the file’s context. If it does not exist, this means our post-create callback deemed
the file uninteresting and we can just move on:

FLT_PREOP_CALLBACK_STATUS

OnPreWrite(PFLT_CALLBACK_DATA Data,

PCFLT_RELATED_OBJECTS FltObjects, PVOID*) {

//

// get the file context if exists

//

FileContext* context;

auto status = FltGetFileContext(FltObjects->Instance,

FltObjects->FileObject,

(PFLT_CONTEXT*)&context);

if (!NT_SUCCESS(status) || context == nullptr) {

//

// no context, continue normally

//

return FLT_PREOP_SUCCESS_NO_CALLBACK;

}

Once we have a context, we need to make a copy of the file data just once before the first write operation.
First, we acquire the mutex and check the written flag from the context. if it’s false, then a backup was
not created yet and we call a helper function to make the backup:

do {

Locker locker(context->Lock);

if (context->Written) {

//

// already written, nothing to do

//

break;

}

FilterFileNameInformation name(Data);

if (!name)

break;

status = BackupFile(&name->Name, FltObjects);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to backup file! (0x%X)\n", status));

}

else {

KeQuerySystemTimePrecise(&context->BackupTime);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 445

}

context->Written = TRUE;

} while (false);

FltReleaseContext(context);

//

// don't prevent the write regardless of any error

//

return FLT_PREOP_SUCCESS_NO_CALLBACK;

}

Locker<> is the usual RAII type to acquire a synchronization object in its constructor and release in the
destructor.

The BackupFile helper function is the key tomaking all this work. Onemight thing that making a file copy
is just an API away; unfortunately, it’s not. There is no “CopyFile” function in the kernel. The CopyFile
user mode API is a non-trivial function that does quite a bit of work to make copy work. Part of it is
reading bytes from the source file and writing to the destination file. But that’s not enough in the general
case. First, there may be multiple streams to copy (in case of NTFS). Second, there is the question of
the security descriptor from the original file which also needs to be copied in certain cases (refer to the
documentation for CopyFile to get all details).

The bottom line is that there is no single CopyFile we can use, and we’ll have to create our own file copy
operation. Fortunately, we just need to copy a single file stream - the default stream to another stream
inside the same physical file as our backup stream. Here is the start of our BackupFile function:

NTSTATUS BackupFile(PUNICODE_STRING path, PCFLT_RELATED_OBJECTS FltObjects) {

//

// get source file size

//

LARGE_INTEGER fileSize;

auto status = FsRtlGetFileSize(FltObjects->FileObject, &fileSize);

if (!NT_SUCCESS(status) || fileSize.QuadPart == 0)

return status;

FsRtlGetFileSize is a simple API that returns the size of a file (default NTFS stream).
This API is recommended whenever the file size is needed given a FILE_OBJECT pointer. The alternative
would be calling ZwQueryInformationFile or FltQueryInformationFile to obtain the file size (it has
many other types of information it can retrieve). The Zw variant is less desirable as it requires a file handle
and in some cases can cause a deadlock.

The route we’ll take is to open two handles - one (source) handle pointing to the original file (with the
default stream to back up) and the other (target) handle to the backup stream. Then, we’ll read from the
source and write to the target. This is conceptually simple, but as is often the case in kernel programming,
the devil is in the details.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 446

Now we’re ready to open the source file with FltCreateFileEx. It’s important not to use ZwCreateFile,
so that the I/O requests are sent to the driver below this driver and not to the top of the file system driver
stack:

HANDLE hSourceFile = nullptr;

HANDLE hTargetFile = nullptr;

PFILE_OBJECT sourceFile = nullptr;

PFILE_OBJECT targetFile = nullptr;

IO_STATUS_BLOCK ioStatus;

void* buffer = nullptr;

do {

OBJECT_ATTRIBUTES sourceFileAttr;

InitializeObjectAttributes(&sourceFileAttr, path,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, nullptr);

status = FltCreateFileEx(

FltObjects->Filter, // filter object

FltObjects->Instance, // filter instance

&hSourceFile, // resulting handle

&sourceFile, // resulting file object

GENERIC_READ | SYNCHRONIZE, // access mask

&sourceFileAttr, // object attributes

&ioStatus, // resulting status

nullptr, FILE_ATTRIBUTE_NORMAL, // allocation size, file attributes

FILE_SHARE_READ | FILE_SHARE_WRITE, // share flags

FILE_OPEN, // create disposition

FILE_SYNCHRONOUS_IO_NONALERT | FILE_SEQUENTIAL_ONLY, // sync I/O

nullptr, 0, // extended attributes, EA length

IO_IGNORE_SHARE_ACCESS_CHECK); // flags

if (!NT_SUCCESS(status))

break;

Before calling FltCreateFileEx, just like other APIs requiring a name, an OBJECT_ATTRIBUTES structure
must be initialized properly with the file name provided to BackupFile. This is the default file stream that
is about to change by a write operation and that’s why we’re making the backup. The important arguments
in the call are:

• filter and instance objects, which provide the necessary information for the call to go to the next
lower layer filter (or the file system) rather than go to the top of the file system stack.

• the returned handle, in hSourceFile.
• the returned FILE_OBJECT, to be used with FltReadFile.
• the access mask set to GENERIC_READ and SYNCHRONIZE.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 447

• the create disposition, in this case indicating the file must exist (FILE_OPEN).
• the create options are set to FILE_SYNCHRONOUS_IO_NONALERT indicating synchronous operations
through the resulting file handle. The SYNCHRONIZE access mask flag is required for synchronous
operations to work.

• the flag IO_IGNORE_SHARE_ACCESS_CHECK is important, because the file in question was already
opened by the client that most likely opened it with no sharing allowed. So we ask the file system
to ignore share access checks for this call.

Read the documentation of FltCreateFileEx to gain a better understanding of all the various options
this function provides.

Next we need to open or create the backup stream within the same file. We’ll name the backup stream
“:backup” and use another call to FltCreateFileEx to get a handle and file object to the target file:

//

// open target file

//

UNICODE_STRING targetFileName;

const WCHAR backupStream[] = L":backup";

targetFileName.MaximumLength = path->Length + sizeof(backupStream);

targetFileName.Buffer = (WCHAR*)ExAllocatePool2(POOL_FLAG_PAGED,

targetFileName.MaximumLength, DRIVER_TAG);

if (targetFileName.Buffer == nullptr) {

status = STATUS_NO_MEMORY;

break;

}

RtlCopyUnicodeString(&targetFileName, path);

RtlAppendUnicodeToString(&targetFileName, backupStream);

OBJECT_ATTRIBUTES targetFileAttr;

InitializeObjectAttributes(&targetFileAttr, &targetFileName,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, nullptr);

status = FltCreateFileEx(

FltObjects->Filter, // filter object

FltObjects->Instance, // filter instance

&hTargetFile, // resulting handle

&targetFile, // resulting file object

GENERIC_WRITE | SYNCHRONIZE, // access mask

&targetFileAttr, // object attributes

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 448

&ioStatus, // resulting status

nullptr, FILE_ATTRIBUTE_NORMAL,

0, // share flags

FILE_OVERWRITE_IF, // create disposition

FILE_SYNCHRONOUS_IO_NONALERT | FILE_SEQUENTIAL_ONLY,

nullptr, 0, // extended attributes, EA length

0); // flags

ExFreePool(targetFileName.Buffer);

if (!NT_SUCCESS(status)) {

//

// could fail if a restore operation is in progress

//

break;

}

The file name is built by concatenating the base file name and the backup stream name. It is opened for
write access (GENERIC_WRITE) and overwrites any data that may be present (FILE_OVERWRITE_IF).

With these file objects in hand, we can start from the source and writing to the target. A simple approach
would be to allocate a buffer with the file size, and do the work with a single read and a single write. This
could be problematic, however, if the file is very large, possibly causing memory allocation to fail.

There is also the risk of creating a backup for a very large file, possibly consuming lots of
disk space. For this kind of driver, backup should probably be avoided when a file is too large
(configurable in the Registry for instance) or avoid backup if the remaining disk space would
be below a certain threshold (again could be configurable). This is left as an exercise for the
reader.

A better option would be to allocate a relatively small buffer and just loop around until all the files chunks
have been copied. This is the approach we’ll use. First, allocate a buffer:

ULONG size = 1 << 20; // 1 MB

buffer = ExAllocatePool2(POOL_FLAG_PAGED, size, DRIVER_TAG);

if (!buffer) {

status = STATUS_INSUFFICIENT_RESOURCES;

break;

}

Now the loop:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 449

ULONG bytes;

auto saveSize = fileSize;

while (fileSize.QuadPart > 0) {

status = FltReadFile(

FltObjects->Instance,

sourceFile, // source file object

nullptr, // byte offset

(ULONG)min((LONGLONG)size, fileSize.QuadPart), // # of bytes

buffer,

0, // flags

&bytes, // bytes read

nullptr, nullptr); // no callback

if (!NT_SUCCESS(status))

break;

//

// write to target file

//

status = FltWriteFile(

FltObjects->Instance,

targetFile, // target file

nullptr, // offset

bytes, // bytes to write

buffer, // data to write

0, // flags

nullptr, // written

nullptr, nullptr); // no callback

if (!NT_SUCCESS(status))

break;

//

// update byte count remaining

//

fileSize.QuadPart -= bytes;

}

The loop keeps going as long as there are bytes to transfer. We start with the file size and then decrement
it for every chunk transferred. The function that do the actual work are FltReadFile and FltWriteFile.
We could have used ZwReadFile and ZwWriteFIle (we have handles), but this is slightly less efficient.
Notice the offsets are set to NULL, because we’re using synchronous I/O, where the file objects track a file
pointer automatically.

When all is done, there is one last thing to do. Since we may be overwriting a previous backup (that may

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 450

have been larger than this one), we must set the end of file pointer to the current offset:

FILE_END_OF_FILE_INFORMATION info;

info.EndOfFile = saveSize;

status = FltSetInformationFile(FltObjects->Instance,

targetFile, &info, sizeof(info), FileEndOfFileInformation);

} while (false);

Lastly, we need to cleanup everything:

if (buffer)

ExFreePool(buffer);

if (hSourceFile)

FltClose(hSourceFile);

if (hTargetFile)

FltClose(hTargetFile);

if (sourceFile)

ObDereferenceObject(sourceFile);

if (targetFile)

ObDereferenceObject(targetFile);

return status;

}

The Post-Cleanup Callback

Why do we need another callback? Our context is attached to a file, which means it will only be deleted
when the file is deleted, which may never happen. We need to free the context when the file is closed by
the client.

There are two operations that seem relevant here, IRP_MJ_CLOSE and IRP_MJ_CLEANUP. The close opera-
tion seems most intuitive as it’s supposed to be called when the last handle to the file is closed. However,
due to caching, this does not always happen soon enough. A better approach is to handle IRP_MJ_CLEANUP,
which essentially means the file object is no longer needed, as the last handle is has been closed but there
is still outstanding reference to the file object itself. This is a good time to free our context (if exists).

A post-cleanup callback is similar to any other post-callback. We need to check if a context exists, and if
so - delete it:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 451

FLT_POSTOP_CALLBACK_STATUS

OnPostCleanup(PFLT_CALLBACK_DATA Data, PCFLT_RELATED_OBJECTS FltObjects,

PVOID, FLT_POST_OPERATION_FLAGS Flags) {

UNREFERENCED_PARAMETER(Flags);

UNREFERENCED_PARAMETER(Data);

FileContext* context;

auto status = FltGetFileContext(FltObjects->Instance,

FltObjects->FileObject, (PFLT_CONTEXT*)&context);

if (!NT_SUCCESS(status) || context == nullptr) {

//

// no context, continue normally

//

return FLT_POSTOP_FINISHED_PROCESSING;

}

FltReleaseContext(context);

FltDeleteContext(context);

return FLT_POSTOP_FINISHED_PROCESSING;

}

Testing the Driver

We can test the driver by deploying it to a target system as usual, and then manipulating files with one of
the tracked extensions.

In the following example, I created a hello.txt file “Hello, world!”, saved the file, and then changed the
contents to “Goodbye, world!” and saved again. Figure 12-11 shows the Streams command line tool,
available with the source for this chapter:

C:\Demos>type c:\Temp\hello.txt

goodbye, world!

C:\Demos>streams -d c:\Temp\hello.txt

:backup:$DATA (15 bytes)

68 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21 0D 0A hello, world!..

The Streams tool uses the FindFirstStreamW and FindNextStreamW to iterate over the streams
within a file. Check out the source code for more information.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 452

Restoring Backups

How can we restore a backup? We need to copy the “:backup” stream contents over the “normal” file
contents. Unfortunately, the CopyFile API cannot do this, as it does not accept alternate streams. Let’s
write a utility to do the work.

We’ll create a new console application project named Restore. We’ll add the following #includes to the
Restore.cpp file:

#include <Windows.h>

#include <stdio.h>

#include <string>

The main function should accept the file name as a command line argument:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: Restore <filename>\n");

return 0;

}

Next, we’ll open two files, one pointing to the “:backup” stream and the other to the “normal” file. Then,
we’ll copy in chunks, similarly to the driver’s BackupFile code - but in user mode. The Error function
just prints the provided text and whatever is returned from GetLastError:

std::wstring stream(argv[1]);

stream += L":backup";

HANDLE hSource = CreateFile(stream.c_str(), GENERIC_READ,

FILE_SHARE_READ, nullptr, OPEN_EXISTING, 0, nullptr);

if (hSource == INVALID_HANDLE_VALUE)

return Error("Failed to locate backup");

HANDLE hTarget = CreateFile(argv[1], GENERIC_WRITE, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hTarget == INVALID_HANDLE_VALUE)

return Error("Failed to locate file");

LARGE_INTEGER size;

if (!GetFileSizeEx(hSource, &size))

return Error("Failed to get file size");

ULONG bufferSize = (ULONG)min((LONGLONG)1 << 21, size.QuadPart);

void* buffer = VirtualAlloc(nullptr, bufferSize,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 453

MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

if (!buffer)

return Error("Failed to allocate buffer");

DWORD bytes;

while (size.QuadPart > 0) {

if (!ReadFile(hSource, buffer,

(DWORD)(min((LONGLONG)bufferSize, size.QuadPart)),

&bytes, nullptr))

return Error("Failed to read data");

if (!WriteFile(hTarget, buffer, bytes, &bytes, nullptr))

return Error("Failed to write data");

size.QuadPart -= bytes;

}

Extend the driver to store an additional stream in the file with the backup time and date.

File Copying with a Section Object

There is another to perform the copy operation happening in BackupFile using Section objects (known
in user-mode as Memory Mapped Files). A full discussion of section objects is beyond the scope of this
chapter, but here are the basics.

A section object can map a file (or part of a file) to memory, allowing access to the file’s data using memory
APIs, which are more flexible than I/O APIs. Furthermore, no buffers need to be allocated - the mapping
to physical memory and write back (if needed) is maanaged automatically by the memory manager, and
this is generally more efficient than using explicit I/O APIs.

Sections also support sharing memory between processes, or between a kernel driver and user-mode
processes. Refer to the documentation of memory mapped files for more information.

Let’s write an alternative BackupFile function that uses a sescion mapped to the input file for reading
purposes. Using the same idea for writing to the target is also possible, and is left as an exercise for the
reader.

We start the function as in the original:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 454

NTSTATUS

BackupFileWithSection(PUNICODE_STRING path, PCFLT_RELATED_OBJECTS FltObjects) {

LARGE_INTEGER fileSize;

auto status = FsRtlGetFileSize(FltObjects->FileObject, &fileSize);

if (!NT_SUCCESS(status) || fileSize.QuadPart == 0)

return status;

HANDLE hSourceFile = nullptr;

HANDLE hTargetFile = nullptr;

PFILE_OBJECT sourceFile = nullptr;

PFILE_OBJECT targetFile = nullptr;

IO_STATUS_BLOCK ioStatus;

HANDLE hSection = nullptr;

do {

OBJECT_ATTRIBUTES sourceFileAttr;

InitializeObjectAttributes(&sourceFileAttr, path,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, nullptr);

status = FltCreateFileEx(

FltObjects->Filter,

FltObjects->Instance,

&hSourceFile,

&sourceFile,

GENERIC_READ | SYNCHRONIZE,

&sourceFileAttr,

&ioStatus,

nullptr, FILE_ATTRIBUTE_NORMAL,

FILE_SHARE_READ | FILE_SHARE_WRITE,

FILE_OPEN,

FILE_SYNCHRONOUS_IO_NONALERT | FILE_SEQUENTIAL_ONLY,

nullptr, 0,

IO_IGNORE_SHARE_ACCESS_CHECK);

if (!NT_SUCCESS(status))

break;

UNICODE_STRING targetFileName;

const WCHAR backupStream[] = L":backup";

targetFileName.MaximumLength = path->Length + sizeof(backupStream);

targetFileName.Buffer = (WCHAR*)ExAllocatePool2(POOL_FLAG_PAGED,

targetFileName.MaximumLength, DRIVER_TAG);

if (targetFileName.Buffer == nullptr) {

status = STATUS_NO_MEMORY;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 455

break;

}

RtlCopyUnicodeString(&targetFileName, path);

RtlAppendUnicodeToString(&targetFileName, backupStream);

OBJECT_ATTRIBUTES targetFileAttr;

InitializeObjectAttributes(&targetFileAttr, &targetFileName,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, nullptr);

status = FltCreateFileEx(

FltObjects->Filter,

FltObjects->Instance,

&hTargetFile,

&targetFile,

GENERIC_WRITE | SYNCHRONIZE,

&targetFileAttr,

&ioStatus,

nullptr, FILE_ATTRIBUTE_NORMAL,

0,

FILE_OVERWRITE_IF,

FILE_SYNCHRONOUS_IO_NONALERT | FILE_SEQUENTIAL_ONLY,

nullptr, 0, 0);

ExFreePool(targetFileName.Buffer);

if (!NT_SUCCESS(status)) {

break;

}

Now comes the new stuff. We’ll create a section object pointing to the source file:

OBJECT_ATTRIBUTES sectionAttributes = RTL_CONSTANT_OBJECT_ATTRIBUTES(

nullptr, OBJ_KERNEL_HANDLE);

status = ZwCreateSection(&hSection, SECTION_MAP_READ | SECTION_QUERY,

§ionAttributes, nullptr,

PAGE_READONLY, SEC_COMMIT, hSourceFile);

if (!NT_SUCCESS(status))

break;

The secion is created for read access, pointing to the source file (last argument). The loop needs to map a
view into memory of file chunks (we’ll go with 1 MB chunks as before), and then write the data based on
the mapped pointer:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 456

LARGE_INTEGER offset{};

auto saveSize = fileSize;

PVOID buffer = nullptr;

SIZE_T size = 1 << 20;

while (fileSize.QuadPart > 0) {

buffer = nullptr;

SIZE_T bytes = min((LONGLONG)size, fileSize.QuadPart);

status = ZwMapViewOfSection(hSection, NtCurrentProcess(), &buffer, 0, 0\

, &offset, &bytes, ViewUnmap, 0, PAGE_READONLY);

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "Failed in ZwMapViewOfSection (0x%X)\n", sta\

tus));

break;

}

ULONG written;

status = FltWriteFile(

FltObjects->Instance,

targetFile, nullptr,

(ULONG)bytes, buffer,

0, &written,

nullptr, nullptr);

ZwUnmapViewOfSection(NtCurrentProcess(), buffer);

if (!NT_SUCCESS(status))

break;

//

// update count and offset

//

fileSize.QuadPart -= written;

offset.QuadPart += written;

}

FILE_END_OF_FILE_INFORMATION info;

info.EndOfFile = saveSize;

status = FltSetInformationFile(FltObjects->Instance,

targetFile, &info, sizeof(info), FileEndOfFileInformation);

} while(false);

ZwMapViewOfSection pefrorms the mapping, returning the pointer to the mapped memory in buffer.
Notice there is no buffer allocation anywhere - the data is just read directly.

Finall, we have to clean up, which is the same as the original code with the addition of the section handle:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 457

if (hSection)

ZwClose(hSection);

if (hSourceFile)

FltClose(hSourceFile);

if (hTargetFile)

FltClose(hTargetFile);

if (sourceFile)

ObDereferenceObject(sourceFile);

if (targetFile)

ObDereferenceObject(targetFile);

return status;

}

User Mode Communication

We saw in previous chapters one way of communicating between a driver and a user mode client: using
DeviceIoControl. This is certainly a fine way and works well in many scenarios. One of its drawbacks
is that the user mode client must initiate the communication. If the driver has something to send to a user
mode client (or clients), it cannot do so directly. It must store it and wait for the client to ask for the data.

The filter manager provides an alternative mechanism for bi-directional communication between a file
system mini-filter and user mode clients, where any side can send information to the other and even wait
for a reply.

The mini-filter creates a filter communication port object by calling FltCreateCommunicationPort to
create such a port and register callbacks for client connection and messages. The user mode client connects
to the port by calling FilterConnectCommunicationPort, receiving a handle to the port.

A mini-filter sends a message to its user mode client(s) with FltSendMessage. Conversely, a user mode
client calls FilterGetMessage to wait until a message arrives, or calls FilterSendMessage to send a
message to the driver. If the driver is expecting a reply, a user mode client calls FilterReplyMessage
with the reply.

Creating the Communication Port

The FltCreateCommunicationPort function is declared as follows:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 458

NTSTATUS FltCreateCommunicationPort (

In PFLT_FILTER Filter,

Outptr PFLT_PORT *ServerPort,

In POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PVOID ServerPortCookie,

In PFLT_CONNECT_NOTIFY ConnectNotifyCallback,

In PFLT_DISCONNECT_NOTIFY DisconnectNotifyCallback,

_In_opt_ PFLT_MESSAGE_NOTIFY MessageNotifyCallback,

In LONG MaxConnections);

Here is a description of the parameters to FltCreateCommunicationPort:

• Filter is the opaque pointer returned from FltRegisterFilter.
• ServerPort is an output opaque handle that is used internally to listen to incoming messages from
user mode.

• ObjectAttributes is the standard attributes structure that must contain the server port name and a
security descriptor that would allow user mode clients to connect (more on this later).

• ServerPortCookie is an optional driver-defined pointer that can be used to distinguish between
multiple open ports in message callbacks.

• ConnectNotifyCallback is a callback the driver must provide, called when a new client connects to
the port.

• DisconnectNotifyCallback is a callback called when a user mode client disconnects from the port.
• MessageNotifyCallback is the callback invoked when a message arrives on the port.
• MaxConnections indicates the maximum number of clients that can connect to the port. It must be
greater than zero.

A successful call to FltCreateCommunicationPort requires the driver to prepare an object attributes and
a security descriptor. The simplest security descriptor can be createdwith FltBuildDefaultSecurityDescriptor
like so:

PSECURITY_DESCRIPTOR sd;

status = FltBuildDefaultSecurityDescriptor(&sd, FLT_PORT_ALL_ACCESS);

The security desciptor is necessary, otherwise no user-mode client would be able to open a handle success-
fully, as the port is too secure. The object attributes can then be initialized:

UNICODE_STRING portName = RTL_CONSTANT_STRING(L"\\MyPort");

OBJECT_ATTRIBUTES portAttr;

InitializeObjectAttributes(&portAttr, &name,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, sd);

The name of the port is in the object manager namespace, viewable with WinObj after port creation.
The flags must include OBJ_KERNEL_HANDLE, otherwise the call fails. Notice the last argument being
the security descriptor defined earlier. Now the driver is ready to call FltCreateCommunicationPort,
typically done after the driver calls FltRegisterFilter (because the returned opaque filter object is
needed for the call), but before FltStartFiltering so the port can be ready when actual filtering starts:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 459

PFLT_PORT ServerPort;

status = FltCreateCommunicationPort(FilterHandle, &ServerPort, &portAttr, nullp\

tr,

PortConnectNotify, PortDisconnectNotify, PortMessageNotify, 1);

// free security descriptor

FltFreeSecurityDescriptor(sd);

User Mode Connection

User mode clients call FilterConnectCommunicationPort to connect to an open port, declared like so:

HRESULT FilterConnectCommunicationPort (

In LPCWSTR lpPortName,

In DWORD dwOptions,

_In_reads_bytes_opt_(wSizeOfContext) LPCVOID lpContext,

In WORD wSizeOfContext,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,

Outptr HANDLE *hPort);

Here is a quick rundown of the parameters:

• lpPortName is the port name (such as “\MyPort”). Note that with the default security descriptor
created by the driver, only admin level processes are able to connect.

• dwOptions is usually zero, but FLT_PORT_FLAG_SYNC_HANDLE in Windows 8.1 and later, indicating
the returned handle should work synchronously only. It’s not clear why this is needed since the
default usage is synchronous anyway.

• lpContext and wSizeOfContext support a way to send a buffer to the driver at connection time.
This could be used as a means of authentication, for example, where some password or token is
sent to the driver and the driver will fail requests to connect that don’t adhere to some predefined
authentication mechanism. In a production driver this is generally a good idea, so that unknown
clients could not “hijack” the communication port from legitimate clients.

• lpSecurityAttributes is the usual user mode SECURITY_ATTRIBUTES, typically set to NULL.
• hPort is the output handle used later by the client to send and receive messages.

This call invokes the driver’s client connection notify callback, declared as follows:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 460

NTSTATUS PortConnectNotify(

In PFLT_PORT ClientPort,

_In_opt_ PVOID ServerPortCookie,

_In_reads_bytes_opt_(SizeOfContext) PVOID ConnectionContext,

In ULONG SizeOfContext,

_Outptr_result_maybenull_ PVOID *ConnectionPortCookie);

ClientPort is a unique handle to the client’s port which the driver must keep around and use when-
ever it needs to communicate with that client. ServerPortCookie is the same one the driver specified in
FltCreateCommunicationPort. The ConnectionContex and SizeOfContex parameters contain the op-
tional buffer sent by the client. Finally, ConnectionPortCookie is an optional value the driver can return
as representing this client; it’s passed in the client disconnect and message notification routines.

If the driver agrees to accept the client’s connection it returns STATUS_SUCCESS. Otherwise, the client will
receive a failure HRESULT back at FilterConnectCommunicationPort.

Once the call to FilterConnectCommunicationPort succeeds, the client can start communicating with
the driver, and vice-versa.

Sending and Receiving Messages

A mini-filter driver can send a message to clients with FltSendMessage declared like so:

NTSTATUS

FLTAPI

FltSendMessage (

In PFLT_FILTER Filter,

In PFLT_PORT *ClientPort,

In PVOID SenderBuffer,

In ULONG SenderBufferLength,

Out PVOID ReplyBuffer,

_Inout_opt_ PULONG ReplyLength,

_In_opt_ PLARGE_INTEGER Timeout);

The first two parameters should be known by now. The driver can send any buffer described by Sender-
Buffer with length SenderBufferLength. Typically the driver will define some structure in a common
header file the client can include as well so that it can correctly interpret the received buffer. Optionally,
the driver may expect a reply, and if so, the ReplyBuffer parameter should be non-NULLwith the maximum
reply length stored in ReplyLength. Finally, Timeout indicates how long the driver is willing to wait the
message to reach the client (and wait for a reply, if one is expected). The timeout has the usual format,
described here for convenience:

• if the pointer is NULL, the driver is willing to wait indefinitely.
• if the value is positive, then it’s an absolute time in 100nsec units since January 1, 1601 at midnight.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 461

• if the value is negative, it’s relative time - the most common case - in the same 100nsec units. For
example, to specify one second, specify -100000000. As another example, to specify x milliseconds,
multiply x by -10000.

The driver should be careful not to specify NULL from within a callback, because it means that if the client
is currently not listening, the thread blocks until it does, which may never happen. It’s better to specify
some limited value. Even better, if a reply is not needed right away, a work item can be used to send the
message and wait for longer if needed (refer to chapter 6 for more information on work items, although
the filter manager has its own work item APIs).

From the client’s perspective, it canwait for amessage from the driver with FilterGetMessage, specifying
the port handle received when connecting, a buffer and size for the incoming message and an OVERLAPPED
structure than can be used to make the call asynchronous (non-blocking). The received buffer always
has a header of type FILTER_MESSAGE_HEADER, followed by the actual data sent by the driver. FILTER_-
MESSAGE_HEADER is defined like so:

typedef struct _FILTER_MESSAGE_HEADER {

ULONG ReplyLength;

ULONGLONG MessageId;

} FILTER_MESSAGE_HEADER, *PFILTER_MESSAGE_HEADER;

If a reply is expected, ReplyLength indicates how many bytes at most are expected. The MessageId field
allows distinguishing between messages, which the client should use if it calls FilterReplyMessage.

A client can initiate its own message with FilterSendMessagewhich eventually lands in the driver’s call-
back registered in FltCreateCommunicationPort. FilterSendMessage can specify a buffer comprising
the message to send and an optional buffer for a reply that may be expected from the mini-filter.

See the documentation for FilterSendMessage and FilterReplyMessage for the complete details.

Enhanced Backup Driver

Let’s enhance the file backup driver to send notifications to a user mode client when a file has been backed
up. The source code is part of a different project, KBackup2, but the target file name is still KBackup.sys.

First, we’ll define additional global variables to hold state related to the communication port:

PFLT_PORT g_Port;

PFLT_PORT g_ClientPort;

g_Port is the driver’s server port and g_ClientPort is the client port once connected (we will allow a
single client only).

We’ll have to modify DriverEntry to create the communication port as described in the previous section.
Here is the revised DriverEntry:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 462

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

auto status = InitMiniFilter(DriverObject, RegistryPath);

if (!NT_SUCCESS(status))

return status;

do {

UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\BackupPort");

PSECURITY_DESCRIPTOR sd;

status = FltBuildDefaultSecurityDescriptor(&sd, FLT_PORT_ALL_ACCESS);

if (!NT_SUCCESS(status))

break;

OBJECT_ATTRIBUTES attr;

InitializeObjectAttributes(&attr, &name,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE, nullptr, sd);

status = FltCreateCommunicationPort(g_Filter, &g_Port, &attr, nullptr,

PortConnectNotify, PortDisconnectNotify, PortMessageNotify, 1);

FltFreeSecurityDescriptor(sd);

if (!NT_SUCCESS(status))

break;

status = FltStartFiltering(g_Filter);

} while (false);

if (!NT_SUCCESS(status)) {

FltUnregisterFilter(g_Filter);

}

return status;

}

The driver only allows a single client to connect to the port (the last 1 to FltCreateCommunicationPort)
, which is quite common when a mini-filter works in tandem with a user mode service.

The PortConnectNotify callback is called when a client attempts to connect. Our driver simply stores
the client’s port and returns success:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 463

NTSTATUS PortConnectNotify(

PFLT_PORT ClientPort, PVOID ServerPortCookie,

PVOID ConnectionContext, ULONG SizeOfContext,

PVOID* ConnectionPortCookie) {

UNREFERENCED_PARAMETER(ServerPortCookie);

UNREFERENCED_PARAMETER(ConnectionContext);

UNREFERENCED_PARAMETER(SizeOfContext);

UNREFERENCED_PARAMETER(ConnectionPortCookie);

g_ClientPort = ClientPort;

return STATUS_SUCCESS;

}

When the client disconnects, the PortDisconnectNotify callback is invoked. It’s important to close the
client port at that time, otherwise the mini-filter will never be unloaded:

void PortDisconnectNotify(PVOID ConnectionCookie) {

UNREFERENCED_PARAMETER(ConnectionCookie);

FltCloseClientPort(g_Filter, &g_ClientPort);

g_ClientPort = nullptr;

}

In this driver we don’t expect any messages from the client - the driver is the only one sending messages
- so the PostMessageNotify callback has an empty implementation.

Nowwe need to actually send amessagewhen a file has been backed up successfully. For this purpose, we’ll
define a message structure common to the driver and the client in its own header file, BackupCommon.h:

struct FileBackupPortMessage {

USHORT FileNameLength;

WCHAR FileName[1];

};

The message contains the file name length and the file name itself. The message does not have a fixed size
and depends on the file name length. In the pre-write callback after a file was backed up successfully we
need to allocate and initialize a buffer to send:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 464

if (g_ClientPort) { // client connected

USHORT nameLen = name->Name.Length;

USHORT len = sizeof(FileBackupPortMessage) + nameLen;

auto msg = (FileBackupPortMessage*)ExAllocatePool2(

POOL_FLAG_PAGED, len, DRIVER_TAG);

if (msg) {

msg->FileNameLength = nameLen / sizeof(WCHAR);

RtlCopyMemory(msg->FileName, name->Name.Buffer, nameLen);

LARGE_INTEGER timeout;

timeout.QuadPart = -10000 * 100; // 100 msec

FltSendMessage(g_Filter, &g_ClientPort, msg, len,

nullptr, nullptr, &timeout);

ExFreePool(msg);

}

}

First we check if any client is connected, and if so we allocate a buffer with the proper size to include the
file name. Then we copy it to the buffer (RtlCopyMemory, the same as memcpy) before sending it on its
way with a limited timeout to be received.

Finally, in the filter’s unload routine we must close the filter communication port:

NTSTATUS BackupUnload(FLT_FILTER_UNLOAD_FLAGS Flags) {

UNREFERENCED_PARAMETER(Flags);

FltCloseCommunicationPort(g_Port);

FltUnregisterFilter(g_Filter);

return STATUS_SUCCESS;

}

The User Mode Client

Let’s build a simple client that opens the port and listens to messages of files being backed up. We’ll create
a new console application named BackupMon, and add the following #includes:

#include <Windows.h>

#include <fltUser.h>

#include <stdio.h>

#include <string>

#include "..\KBackup2\BackupCommon.h"

fltuser.h is the user mode header where the FilterXxx functions are declared (they are not part of
windows.h). In the cpp file we must add the import library for these functions:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 465

#pragma comment(lib, "fltlib")

Alternatively, this library can be added in the project’s properties in the Linker node, under
Input. Putting this in the source file is easier and more robust, since changes to the project
properties will not effect the setting. Without this library, “unresolved external” linker errors
will show up.

Our main function needs first to open the communication port:

int main() {

HANDLE hPort;

auto hr = FilterConnectCommunicationPort(L"\\BackupPort",

0, nullptr, 0, nullptr, &hPort);

if (FAILED(hr)) {

printf("Error connecting to port (HR=0x%08X)\n", hr);

return 1;

}

Now we can allocate a buffer for incoming messages and loop around forever waiting for messages. Once
a message is received, we’ll send it for handling:

BYTE buffer[1 << 12]; // 4 KB

auto message = (FILTER_MESSAGE_HEADER*)buffer;

for (;;) {

hr = FilterGetMessage(hPort, message, sizeof(buffer), nullptr);

if (FAILED(hr)) {

printf("Error receiving message (0x%08X)\n", hr);

break;

}

HandleMessage(buffer + sizeof(FILTER_MESSAGE_HEADER));

}

CloseHandle(hPort);

return 0;

}

The buffer here is allocated statically because the message just includes a file name, so a 4KB buffer
should be more than enough. Once a message is received, we pass the message body to a helper function,
HandleMessage, being careful to skip the always-present header.

All that’s left now is to do something with the data:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 466

void HandleMessage(const BYTE* buffer) {

auto msg = (FileBackupPortMessage*)buffer;

std::wstring filename(msg->FileName, msg->FileNameLength);

printf("file backed up: %ws\n", filename.c_str());

}

We build the string based on the pointer and length (fortunately, the C++ standard wstring class has
such a convenient constructor). This is important because the string is not necessarily NULL-terminated
(although we could have zeroed out the buffer before each message receipt, thus making sure zeros are
present at the end of the string).

The client application must be running elevated for the port open to succeed.

Debugging

Debugging file system mini-filter is no different than debugging any other kernel driver. However, the
Debugging Tools for Windows package has a special extension DLL, fltkd.dll, with specific commands to
help with mini-filters. This DLL is not one of the default loaded extension DLLs, so the commands must
be used with their “full name” that includes the fltkd prefix and the command. Alternatively, the DLL can
be loaded explicitly with the .load command and then the commands can be directly used.

Table 12-3 shows the some of the commands from fltkd with a brief description.

Table 12-3: fltkd.dll debugger commands

Command Description

!help shows the command list with brief descriptions

!filters shows information on all loaded mini-filters

!filter shows information for the specified filter address

!instance shows information for the specified instance address

!volumes shows all volume objects

!volume shows detailed information on the specified volume address

!portlist shows the server ports for the specified filter

!port shows information on the specified client port

Here is an example session using some of the above commands:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 467

2: kd> .load fltkd

2: kd> !filters

Filter List: ffff8b8f55bf60c0 "Frame 0"

FLT_FILTER: ffff8b8f579d9010 "bindflt" "409800"

FLT_INSTANCE: ffff8b8f62ea8010 "bindflt Instance" "409800"

FLT_FILTER: ffff8b8f5ba06010 "CldFlt" "409500"

FLT_INSTANCE: ffff8b8f550aaa20 "CldFlt" "180451"

FLT_FILTER: ffff8b8f55ceca20 "WdFilter" "328010"

FLT_INSTANCE: ffff8b8f572d6b30 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f575d5b30 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f585d2050 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f58bde010 "WdFilter Instance" "328010"

FLT_FILTER: ffff8b8f5cdc6320 "storqosflt" "244000"

FLT_FILTER: ffff8b8f550aca20 "wcifs" "189900"

FLT_INSTANCE: ffff8b8f551a6720 "wcifs Instance" "189900"

FLT_FILTER: ffff8b8f576cab30 "FileCrypt" "141100"

FLT_FILTER: ffff8b8f550b2010 "luafv" "135000"

FLT_INSTANCE: ffff8b8f550ae010 "luafv" "135000"

FLT_FILTER: ffff8b8f633e8c80 "FileBackup" "100200"

FLT_INSTANCE: ffff8b8f645df290 "FileBackup Instance" "100200"

FLT_INSTANCE: ffff8b8f5d1a7880 "FileBackup Instance" "100200"

FLT_FILTER: ffff8b8f58ce2be0 "npsvctrig" "46000"

FLT_INSTANCE: ffff8b8f55113a60 "npsvctrig" "46000"

FLT_FILTER: ffff8b8f55ce9010 "Wof" "40700"

FLT_INSTANCE: ffff8b8f572e2b30 "Wof Instance" "40700"

FLT_INSTANCE: ffff8b8f5bae7010 "Wof Instance" "40700"

FLT_FILTER: ffff8b8f55ce8520 "FileInfo" "40500"

FLT_INSTANCE: ffff8b8f579cea20 "FileInfo" "40500"

FLT_INSTANCE: ffff8b8f577ee8a0 "FileInfo" "40500"

FLT_INSTANCE: ffff8b8f58cc6730 "FileInfo" "40500"

FLT_INSTANCE: ffff8b8f5bae2010 "FileInfo" "40500"

2: kd> !portlist ffff8b8f633e8c80

FLT_FILTER: ffff8b8f633e8c80

Client Port List : Mutex (ffff8b8f633e8ed8) List [ffff8b8f5949b7a0-f\

fff8b8f5949b7a0] mCount=1

FLT_PORT_OBJECT: ffff8b8f5949b7a0

FilterLink : [ffff8b8f633e8f10-ffff8b8f633e8f10]

ServerPort : ffff8b8f5b195200

Cookie : 0000000000000000

Lock : (ffff8b8f5949b7c8)

MsgQ : (ffff8b8f5949b800) NumEntries=1 Enabled

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 468

MessageId : 0x0000000000000000

DisconnectEvent : (ffff8b8f5949b8d8)

Disconnected : FALSE

2: kd> !volumes

Volume List: ffff8b8f55bf6140 "Frame 0"

FLT_VOLUME: ffff8b8f579cb6b0 "\Device\Mup"

FLT_INSTANCE: ffff8b8f572d6b30 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f579cea20 "FileInfo" "40500"

FLT_VOLUME: ffff8b8f57af8530 "\Device\HarddiskVolume4"

FLT_INSTANCE: ffff8b8f62ea8010 "bindflt Instance" "409800"

FLT_INSTANCE: ffff8b8f575d5b30 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f551a6720 "wcifs Instance" "189900"

FLT_INSTANCE: ffff8b8f550aaa20 "CldFlt" "180451"

FLT_INSTANCE: ffff8b8f550ae010 "luafv" "135000"

FLT_INSTANCE: ffff8b8f645df290 "FileBackup Instance" "100200"

FLT_INSTANCE: ffff8b8f572e2b30 "Wof Instance" "40700"

FLT_INSTANCE: ffff8b8f577ee8a0 "FileInfo" "40500"

FLT_VOLUME: ffff8b8f58cc4010 "\Device\NamedPipe"

FLT_INSTANCE: ffff8b8f55113a60 "npsvctrig" "46000"

FLT_VOLUME: ffff8b8f58ce8060 "\Device\Mailslot"

FLT_VOLUME: ffff8b8f58ce1370 "\Device\HarddiskVolume2"

FLT_INSTANCE: ffff8b8f585d2050 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f58cc6730 "FileInfo" "40500"

FLT_VOLUME: ffff8b8f5b227010 "\Device\HarddiskVolume1"

FLT_INSTANCE: ffff8b8f58bde010 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f5d1a7880 "FileBackup Instance" "100200"

FLT_INSTANCE: ffff8b8f5bae7010 "Wof Instance" "40700"

FLT_INSTANCE: ffff8b8f5bae2010 "FileInfo" "40500"

2: kd> !volume ffff8b8f57af8530

FLT_VOLUME: ffff8b8f57af8530 "\Device\HarddiskVolume4"

FLT_OBJECT: ffff8b8f57af8530 [04000000] Volume

RundownRef : 0x00000000000008b2 (1113)

PointerCount : 0x00000001

PrimaryLink : [ffff8b8f58cc4020-ffff8b8f579cb6c0]

Frame : ffff8b8f55bf6010 "Frame 0"

Flags : [00000164] SetupNotifyCalled EnableNameCaching Fi\

lterAttached +100!!

FileSystemType : [00000002] FLT_FSTYPE_NTFS

VolumeLink : [ffff8b8f58cc4020-ffff8b8f579cb6c0]

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 469

DeviceObject : ffff8b8f573cab60

DiskDeviceObject : ffff8b8f572e7b80

FrameZeroVolume : ffff8b8f57af8530

VolumeInNextFrame : 0000000000000000

Guid : "\??\Volume{5379a5de-f305-4243-a3ec-311938a2df19}\

"

CDODeviceName : "\Ntfs"

CDODriverName : "\FileSystem\Ntfs"

TargetedOpenCount : 1104

Callbacks : (ffff8b8f57af8650)

ContextLock : (ffff8b8f57af8a38)

VolumeContexts : (ffff8b8f57af8a40) Count=0

StreamListCtrls : (ffff8b8f57af8a48) rCount=29613

FileListCtrls : (ffff8b8f57af8ac8) rCount=22668

NameCacheCtrl : (ffff8b8f57af8b48)

InstanceList : (ffff8b8f57af85d0)

FLT_INSTANCE: ffff8b8f62ea8010 "bindflt Instance" "409800"

FLT_INSTANCE: ffff8b8f575d5b30 "WdFilter Instance" "328010"

FLT_INSTANCE: ffff8b8f551a6720 "wcifs Instance" "189900"

FLT_INSTANCE: ffff8b8f550aaa20 "CldFlt" "180451"

FLT_INSTANCE: ffff8b8f550ae010 "luafv" "135000"

FLT_INSTANCE: ffff8b8f645df290 "FileBackup Instance" "100200"

FLT_INSTANCE: ffff8b8f572e2b30 "Wof Instance" "40700"

FLT_INSTANCE: ffff8b8f577ee8a0 "FileInfo" "40500"

2: kd> !instance ffff8b8f5d1a7880

FLT_INSTANCE: ffff8b8f5d1a7880 "FileBackup Instance" "100200"

FLT_OBJECT: ffff8b8f5d1a7880 [01000000] Instance

RundownRef : 0x0000000000000000 (0)

PointerCount : 0x00000001

PrimaryLink : [ffff8b8f5bae7020-ffff8b8f58bde020]

OperationRundownRef : ffff8b8f639c61b0

Number : 3

PoolToFree : ffff8b8f65aad590

OperationsRefs : ffff8b8f65aad5c0 (0)

PerProcessor Ref[0] : 0x0000000000000000 (0)

PerProcessor Ref[1] : 0x0000000000000000 (0)

PerProcessor Ref[2] : 0x0000000000000000 (0)

Flags : [00000000]

Volume : ffff8b8f5b227010 "\Device\HarddiskVolume1"

Filter : ffff8b8f633e8c80 "FileBackup"

TrackCompletionNodes : ffff8b8f5f3f3cc0

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 12: File System Mini-Filters 470

ContextLock : (ffff8b8f5d1a7900)

Context : 0000000000000000

CallbackNodes : (ffff8b8f5d1a7920)

VolumeLink : [ffff8b8f5bae7020-ffff8b8f58bde020]

FilterLink : [ffff8b8f633e8d50-ffff8b8f645df300]

Exercises

1. Write a file systemmini-filter that prevents file deletion from processes running certain image name
(e.g. “cmd.exe”).

2. Extend the file system mini-filter from the previous item, but instead of deleting files, moves the
files to the recycle bin.

3. Extend the file backup driver with the ability to choose the directories where backups will be created.
4. Extend the File Backup driver to include multiple backups, limited by some rule, such as file size,

date or maximum number of backup copies.
5. Modify the File Backup driver to back up only the changed data instead of the entire file.
6. Come up with your own ideas for a file system mini-filter driver!

Summary

This chapter was all about file system mini-filters - powerful drivers capable of intercepting any and all
file system activity. Mini-filters are a big topic, and this chapter should get you started on this interesting
and powerful journey. You can find more information in the WDK documentation, and the WDK samples
on Github.

In the next chapter, we’ll switch gears to look at theWindows Filtering Platform (WFP), used for network
filtering.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering
Platform
TheWindows Filtering Platform (WFP) provides flexible ways to control network filtering. It exposes user-
mode and kernel-mode APIs, that interact with several layers of the networking stack. Some configuration
and control is available directly from user-mode, without requiring any kernel-mode code (although it does
require administrator-level access). WFP replaces older network filtering technologies, such as Transport
Driver Interface (TDI) filters some types of NDIS filters.

If examining network packets (and even modification) is required, or blocking is needed based on some
logic, a kernel-mode Callout driver can be written, which is what we’ll be concerned with in this chapter.
We’ll begin with an overview of the main pieces of WFP, look at some user-mode code examples for
configuring filters before diving into building a simple Callout driver that can use some logic to block
access to the network.

This chapter is an introduction to WFP, as full treatment would probably require its own book.

In this chapter:

• WFP Overview
• The WFP API
• User Mode Examples
• Callout Drivers
• Demo: Callout Driver
• Demo: User-Mode Client
• Summary

WFP Overview

WFP is comprised of user-mode and kernel-mode components. A very high-level architecture is depicted
in figure 13-1.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 472

Figure 13-1: WFP Architecture

In user-mode, the WFP manager is the Base Filtering Engine (BFE), which is a service implemented by
bfe.dll and hosted in a standard svchost.exe instance. It implements the WFP user-mode API, essentially
managing the platform, talking to its kernel counterpart when needed. We’ll examine some of these APIs
in the next section.

User-mode applications, services and other components can utilize this user-mode management API to
examine WFP objects state, and make changes, such as adding or deleting filters. A classic example of
such “user” is the Windows Firewall, which is normally controllable by leveraging theMicrosoft Manage-
ment Console (MMC) that is provided for this purpose (see figure 13-2), but using these APIs from other
applications is just as effective.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 473

Figure 13-2: Windows Firewall MMC

The kernel-mode filter engine exposes various logical layers, where filters (and callouts) can be attached.
Layers represent locations in the network processing of one or more packets. The TCP/IP driver makes
calls to the WFP kernel engine so that it can decide which filters (if any) should be “invoked”.

For filters, this means checking the conditions set by the filter against the current request. If the conditions
are satisfied, the filter’s action is applied. Common actions include blocking a request from being further
processed, allowing the request to continue without further processing in this layer, continuing to the next
filter in this layer (if any), and invoking a callout driver. Callouts can perform any kind of processing, such
as examining and even modifying packet data.
The relationship between layers, filters, and callouts is depicted in figure 13-3.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 474

Figure 13-3: Layers, Filters and Callouts

As you can see in figure 13-3, each layer can have zero or more filters, and zero or more callouts. The
number andmeaning of the layers is fixed and provided out of the box byWindows. Onmost system, there
are about 100 layers. Many of the layers are sets of pairs, where one is for IPv4 and the other (identical in
purpose) is for IPv6.

The WFP Explorer tool I created provides some insight into what makes up WFP. Running the tool and
selecting View/Layers from the menu (or clicking the Layers tool bar button) shows a view of all existing
layers (figure 13-4).

You can download theWFP Explorer tool from its Github repository

(https://github.com/zodiacon/WFPExplorer) or the AllTools repository
(https://github.com/zodiacon/AllTools). The screenshots shown may be slightly different as the tool may
evolve after these screenshots were taken.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 475

Figure 13-4: Layers inWFP Explorer

Each layer is uniquely identified by a GUID. Its Layer ID is used internally by the kernel engine as an
identifier rather than the GUID, as it’s smaller and so is faster (layer IDs are 16-bit only). Most layers have
fields that can be used by filters to set conditions for invoking their actions. Double-clicking a layer shows
its properties. Figure 13-5 shows the general properties of an example layer. Notice it has 382 filters and 2
callouts attached to it. Clicking the Fields tab shows the fields available in this layer, that can be used by
filters to set conditions (figure 13-6). hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 476

Figure 13-5: A Layer’s general properties
hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 477

Figure 13-6: A Layer’s fields

The meaning of the various layers, and the meaning of the fields for the layers are all documented in the
official WFP documentation.

The currently existing filters can be viewed in WFP Explorer by selecting Filters from the View menu
(figure 13-7). Layers cannot be added or removed, but filters can. Management code (user or kernel) can
add and/or remove filters dynamically while the system is running. Figure 16-7 shows that on the system
the tool is running on there are currently 2978 filters.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 478

Figure 13-7: Filters inWFP Explorer

Each filter is uniquely identified by a GUID, and just like layers has a “shorter” id (64-bit) that is used by
the kernel engine to more quickly compare filter IDs when needed. Since multiple filters can be assigned
to the same layer, some kind of ordering must be used when assessing filters. This is where the filter’s
weight comes into play. A weight is a 64-bit value that is used to sort filters by priority. As you can see
in figure 13-7, there are two weight properties - weight and effective weight. Weight is what is specified
when adding the filter, but effective weight is the actual one used. There are three possible values to set
for weight:

• A value between 0 and 15 is interpreted by WFP as a weight index, which simply means that the
effective weight is going to start with 4 bits having the specified weight value and generate the
other 60 bit. For example, if the weight is set to 5, then the effective weight is going to be between
0x5000000000000000 and 0x5FFFFFFFFFFFFFFF.

• An empty value tells WFP to generate an effective weight somewhere in the 64-bit range.
• A value above 15 is taken as is to become the effective weight.

What is an “empty” value? The weight is not really a number, but a FWP_VALUE type can hold
all sorts of values, including holding no value at all (empty).

Double-clicking a filter inWFP Explorer shows its general properties, as shown in figure 13-8.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 479

Figure 13-8: A filter’s general properties

The Conditions tab shows the conditions this filter is configured with (figure 13-9). When all the conditions
are met, the action of the filter is going to fire.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 480

Figure 13-9: A filter’s conditions

The list of fields used by a filter must be a subset of the fields exposed by the layer this filter is attached to.
There are six conditions shown in figure 13-9 out of the possible 39 fields supported by this layer (“ALE
Receive/Accept v4 Layer”). As you can see, there is a lot of flexibility in specifying conditions for fields -
this is evident in the matching enumeration, FWPM_MATCH_TYPE:

typedef enum FWP_MATCH_TYPE_ {

FWP_MATCH_EQUAL = 0,

FWP_MATCH_GREATER,

FWP_MATCH_LESS,

FWP_MATCH_GREATER_OR_EQUAL,

FWP_MATCH_LESS_OR_EQUAL,

FWP_MATCH_RANGE,

FWP_MATCH_FLAGS_ALL_SET,

FWP_MATCH_FLAGS_ANY_SET,

FWP_MATCH_FLAGS_NONE_SET,

FWP_MATCH_EQUAL_CASE_INSENSITIVE,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 481

FWP_MATCH_NOT_EQUAL,

FWP_MATCH_PREFIX,

FWP_MATCH_NOT_PREFIX,

FWP_MATCH_TYPE_MAX

} FWP_MATCH_TYPE;

A filter can have zero conditions, which means it’s always activated.

At this point, we have enough information to get acquainted with the WFP API.

The WFP API

The WFP API exposes its functionality for user-mode and kernel-mode callers. The header files used are
different, to cater for differences in API expectations between user-mode and kernel-mode, but APIs in
general are identical. For example, kernel APIs return NTSTATUS, whereas user-mode APIs return a simple
LONG, that is the error value that is returned normally from GetLastError. Some APIs are provided for
kernel-mode only, as they don’t make sense for user mode.

The user-mode WFP APIs never set the last error, and always return the error value directly.
Zero (ERROR_SUCCESS) means success, while other (positive) values mean failure. Do not call
GetLastError when using WFP - just look at the returned value.

WFP functions and structures use a versioning scheme, where function and structure names end with a
digit, indicating version. For example, FWPM_LAYER0 is the first version of a structure describing a layer.
At the time of writing, this was the only structure for describing a layer. As a counter example, there
are several versions of the function beginning with FwpmNetEventEnum: FwpmNetEventEnum0 (for Vista+),
FwpmNetEventEnum1 (Windows 7+), FwpmNetEventEnum2 (Windows 8+), FwpmNetEventEnum3 (Windows
10+), FwpmNetEventEnum4 (Windows 10 RS4+), and FwpmNetEventEnum5 (Windows 10 RS5+). This is an
extreme example, but there are others with less “versions”. You can use any version that matches the target
platform. To make it easier to work with these APIs and structures, a macro is defined with the base name
that is expanded to the maximum supported version based on the target compilation platform. Here is the
declarations for the macro FwpmNetEventEnum:

DWORD FwpmNetEventEnum0(

In HANDLE engineHandle,

In HANDLE enumHandle,

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT0*** entries,

Out UINT32* numEntriesReturned);

#if (NTDDI_VERSION >= NTDDI_WIN7)

DWORD FwpmNetEventEnum1(

In HANDLE engineHandle,

In HANDLE enumHandle,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 482

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT1*** entries,

Out UINT32* numEntriesReturned);

#endif // (NTDDI_VERSION >= NTDDI_WIN7)

#if (NTDDI_VERSION >= NTDDI_WIN8)

DWORD FwpmNetEventEnum2(

In HANDLE engineHandle,

In HANDLE enumHandle,

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT2*** entries,

Out UINT32* numEntriesReturned);

#endif // (NTDDI_VERSION >= NTDDI_WIN8)

#if (NTDDI_VERSION >= NTDDI_WINTHRESHOLD)

DWORD FwpmNetEventEnum3(

In HANDLE engineHandle,

In HANDLE enumHandle,

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT3*** entries,

Out UINT32* numEntriesReturned);

#endif // (NTDDI_VERSION >= NTDDI_WINTHRESHOLD)

#if (NTDDI_VERSION >= NTDDI_WIN10_RS4)

DWORD FwpmNetEventEnum4(

In HANDLE engineHandle,

In HANDLE enumHandle,

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT4*** entries,

Out UINT32* numEntriesReturned);

#endif // (NTDDI_VERSION >= NTDDI_WIN10_RS4)

#if (NTDDI_VERSION >= NTDDI_WIN10_RS5)

DWORD FwpmNetEventEnum5(

In HANDLE engineHandle,

In HANDLE enumHandle,

In UINT32 numEntriesRequested,

_Outptr_result_buffer_(*numEntriesReturned) FWPM_NET_EVENT5*** entries,

Out UINT32* numEntriesReturned);

#endif // (NTDDI_VERSION >= NTDDI_WIN10_RS5)

You can see that the differences in the functions relate to the structures returned as part of these APIs
(FWPM_NET_EVENTx). It’s recommended you use the macros, and only turn to specific versions if there is a
compelling reason to do so.

The WFP APIs adhere to strict naming conventions that make it easier to use. All management func-
tions start with Fwpm (Filtering Windows Platform Management), and all management structures start
with FWPM. The function names themselves use the pattern <Prefix><Object Type><Operation>, such as

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 483

FwpmFilterAdd and FwpmLayerGetByKey.

It’s curious that the prefixes used for functions, structures, and enums start with FWP rather than the
(perhaps) expected WFP. I couldn’t find a compelling reason for this.

WFP header files start with fwp and end with u for user-mode or k for kernel-mode. For example, fwpmu.h
holds the management functions for user-mode callers, whereas fwpmk.h is the header for kernel callers.
Two common files, fwptypes.h and fwpmtypes.h are used by both user-mode and kernel-mode headers.
They are included by the “main” header files.

User-Mode Examples

Beforemaking any calls to specific APIs, a handle to theWFP enginemust be openedwith FwpmEngineOpen:

DWORD FwpmEngineOpen0(

_In_opt_ const wchar_t* serverName, // must be NULL

In UINT32 authnService, // RPC_C_AUTHN_DEFAULT

_In_opt_ SEC_WINNT_AUTH_IDENTITY_W* authIdentity,

_In_opt_ const FWPM_SESSION0* session,

Out HANDLE* engineHandle);

Most of the arguments have good defaults when NULL is specified. The returned handle must be used with
subsequent APIs. Once it’s no longer needed, it must be closed:

DWORD FwpmEngineClose0(_Inout_ HANDLE engineHandle);

Enumerating Objects

What can we do with an engine handle? One thing provided with the management API is enumeration.
These are the APIs used by WFP Explorer to enumerate layers, filters, sessions, and other object types in
WFP. The following example displays some details for all the filters in the system (error handling omitted
for brevity, the project wfpfilters has the full source code):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 484

#include <Windows.h>

#include <fwpmu.h>

#include <stdio.h>

#include <string>

#pragma comment(lib, "Fwpuclnt")

std::wstring GuidToString(GUID const& guid) {

WCHAR sguid[64];

return ::StringFromGUID2(guid, sguid, _countof(sguid)) ? sguid : L"";

}

const char* ActionToString(FWPM_ACTION const& action) {

switch (action.type) {

case FWP_ACTION_BLOCK: return "Block";

case FWP_ACTION_PERMIT: return "Permit";

case FWP_ACTION_CALLOUT_TERMINATING: return "Callout Terminating";

case FWP_ACTION_CALLOUT_INSPECTION: return "Callout Inspection";

case FWP_ACTION_CALLOUT_UNKNOWN: return "Callout Unknown";

case FWP_ACTION_CONTINUE: return "Continue";

case FWP_ACTION_NONE: return "None";

case FWP_ACTION_NONE_NO_MATCH: return "None (No Match)";

}

return "";

}

int main() {

//

// open a handle to the WFP engine

//

HANDLE hEngine;

FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT, nullptr, nullptr, &hEngine);

//

// create an enumeration handle

//

HANDLE hEnum;

FwpmFilterCreateEnumHandle(hEngine, nullptr, &hEnum);

UINT32 count;

FWPM_FILTER** filters;

//

// enumerate filters

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 485

//

FwpmFilterEnum(hEngine, hEnum,

8192, // maximum entries,

&filters, // returned result

&count); // how many actually returned

for (UINT32 i = 0; i < count; i++) {

auto f = filters[i];

printf("%ws Name: %-40ws Id: 0x%016llX Conditions: %2u Action: %s\n",

GuidToString(f->filterKey).c_str(),

f->displayData.name,

f->filterId,

f->numFilterConditions,

ActionToString(f->action));

}

//

// free memory allocated by FwpmFilterEnum

//

FwpmFreeMemory((void**)&filters);

//

// close enumeration handle

//

FwpmFilterDestroyEnumHandle(hEngine, hEnum);

//

// close engine handle

//

FwpmEngineClose(hEngine);

return 0;

}

The enumeration pattern repeat itself with all other WFP object types (layers, callouts, sessions, etc.).

Enumerate all the layers in the system in a similar way.

Adding Filters

Let’s see if we can add a filter to perform some useful function. Suppose we want to prevent network
access from some process. We can add a filter at an appropriate layer to make it happen. Adding a filter is

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 486

a matter of calling FwpmFilterAdd:

DWORD FwpmFilterAdd0(

In HANDLE engineHandle,

In const FWPM_FILTER0* filter,

_In_opt_ PSECURITY_DESCRIPTOR sd,

_Out_opt_ UINT64* id);

The main work is to fill a FWPM_FILTER structure defined like so:

typedef struct FWPM_FILTER0_ {

GUID filterKey;

FWPM_DISPLAY_DATA0 displayData;

UINT32 flags;

/* [unique] */ GUID *providerKey;

FWP_BYTE_BLOB providerData;

GUID layerKey;

GUID subLayerKey;

FWP_VALUE0 weight;

UINT32 numFilterConditions;

/* [unique][size_is] */ FWPM_FILTER_CONDITION0 *filterCondition;

FWPM_ACTION0 action;

/* [switch_is] */ /* [switch_type] */ union

{

/* [case()] */ UINT64 rawContext;

/* [case()] */ GUID providerContextKey;

} ;

/* [unique] */ GUID *reserved;

UINT64 filterId;

FWP_VALUE0 effectiveWeight;

} FWPM_FILTER0;

The weird-looking comments are generated by the Microsoft Interface Definition Language
(MIDL) compiler when generating the header file from an IDL file. Although IDL is most
commonly used by Component Object Model (COM) to define interfaces and types, WFP uses
IDL to define its APIs, even though no COM interfaces are used; just plain C functions. The
original IDL files are provided with the SDK, and they are worth checking out, since they may
contain developer comments that are not “transferred” to the resulting header files.

Some members in FWPM_FILTER are necessary - layerKey to indicate the layer to attach this filter, any
conditions needed to trigger the filter (numFilterConditions and the filterCondition array), and the
action to take if the filter is triggered (action field).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 487

Let’s create some code that prevents the Windows Calculator from accessing the network. You may be
wondering why would calculator require network access? No, it’s not contacting Google to ask for the
result of 2+2. It’s using the Internet for accessing current exchange rates (figure 13-10).

Figure 13-10: Windows Calculator as Currency Converter

Clicking the Update Rates button causes Calculator to consult the Internet for the updated exchange rate.
We’ll add a filter that prevents this.

We’ll start as usual by opening handle to the WFP engine as was done in the previous example. Next, we
need to fill the FWPM_FILTER structure. First, a nice display name:

FWPM_FILTER filter{}; // zero out the structure

WCHAR filterName[] = L"Prevent Calculator from accessing the web";

filter.displayData.name = filterName;

The name has no functional part - it just allows easy identification when enumerating filters. Now we
need to select the layer. We’ll also specify the action:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 488

filter.layerKey = FWPM_LAYER_ALE_AUTH_CONNECT_V4;

filter.action.type = FWP_ACTION_BLOCK;

There are several layers that could be used for blocking access, with the above layer being good enough to
get the job done. Full description of the provided layers, their purpose and when they are used is provided
as part of the WFP documentation.

The last part to initialize is the conditions to use. Without conditions, the filter is always going to be
invoked, which will block all network access (or just for some processes, based on its effective weight). In
our case, we only care about the application - we don’t care about ports or protocols. The layer we selected
has several fields, one of with is called ALE App ID (ALE stands for Application Layer Enforcement) - see
figure 13-11.

Figure 13-11: ALE Connect v4 Layer fields

This field can be used to identify an executable. To get that ID, we can use FwpmGetAppIdFromFileName.
Here is the code for Calculator’s executable:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 489

WCHAR filename[] = LR"(C:\Program Files\WindowsApps\Microsoft.WindowsCalculator\

_11.2210.0.0_x64__8wekyb3d8bbwe\CalculatorApp.exe)";

FWP_BYTE_BLOB* appId;

FwpmGetAppIdFromFileName(filename, &appId);

The code uses the path to the Calculator executable on my system - you should change that as needed
because Calculator’s version might be different.

A quick way to get the executable path is to run Calculator, open Process Explorer, open the
resulting process properties, and copy the path from the Image tab.

The R"(and closing parenthesis in the above snippet disables the “escaping” property of
backslashes, making it easier to write file paths (C++ 14 feature).

The return value from FwpmGetAppIdFromFileName is a BLOB that needs to be freed eventually with
FwpmFreeMemory.

Now we’re ready to specify the one and only condition:

FWPM_FILTER_CONDITION cond;

cond.fieldKey = FWPM_CONDITION_ALE_APP_ID; // field

cond.matchType = FWP_MATCH_EQUAL;

cond.conditionValue.type = FWP_BYTE_BLOB_TYPE;

cond.conditionValue.byteBlob = appId;

filter.filterCondition = &cond;

filter.numFilterConditions = 1;

The conditionValue member of FWPM_FILTER_CONDITION is a FWP_VALUE, which is a generic way to
specify many types of values. It has a type member that indicates the member in a big union that should
be used. In our case, the type is a BLOB (FWP_BYTE_BLOB_TYPE) and the actual value should be passed in
the byteBlob union member.

Those familiar with COM may recognize this approach as similar to a VARIANT.

The last step is to add the filter, and repeat the exercise for IPv6, as we don’t know how Calculator connects
to the currency exchange server (we can find out, but it would be simpler and more robust to just block
IPv6 as well):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 490

FwpmFilterAdd(hEngine, &filter, nullptr, nullptr);

filter.layerKey = FWPM_LAYER_ALE_AUTH_CONNECT_V6; // IPv6

FwpmFilterAdd(hEngine, &filter, nullptr, nullptr);

We didn’t specify any GUID for the filter. This causes WFP to generate a GUID. We didn’t specify a
weight, either. WFP will generate it as well.

All that’s left now is some cleanup:

FwpmFreeMemory((void**)&appId);

FwpmEngineClose(hEngine);

Running this code (elevated) and trying to refresh the currency exchange rate with Calculator should fail
(figure 13-12). Note that there is no need to restart Calculator - the effect is immediate.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 491

Figure 13-12: Calculator failing to update exchange rate

We can locate the filters added withWFP Explorer (figure 13-13):

Figure 13-13: Calculator-related filters inWFP Explorer

Double-clicking one of the filters and selecting the Conditions tab shows the only condition where the
App ID is revealed to be the full path of the executable in device form (figure 13-14). Of course, you should

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 492

not take any dependency on this format, as it may change in the future.

Figure 13-14: Filter condition with App ID

You can right-click the filters and delete them usingWFP Explorer. The FwpmFilterDeleteByKey API is
used behind the scenes. This will restore Calculator’s exchange rate update functionality.

Callout Drivers

The existing WFP layers provides lots of flexibility when creating filters, thanks to the many fields and
comparison options available. In many scenarios, you could get away with using the user mode API to
add filters to get the functionality you need without resorting to writing a kernel driver. That said, some
scenarios require more flexibility than can be provided by the built-in layers and callouts alone. Here are
some examples that would require a callout driver:

• Checking some conditions that are not provided by fields in a required layer.
• Examining actual packet data, optionally modifying it.
• Pending an operation until a decision can be made whether to let the operation continue or not.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 493

In the rest of this chapter, we’ll look at some examples of callout drivers (as this is a kernel programming
book).

Callout Driver Basics

A callout driver starts its life just like any other driver, with a DriverEntry routine. Using a callout driver
requires three steps, one of which can only be performed by the driver:

1. Register a callout with the kernel WFP engine.
2. Add the callout to one or more applicable layers.
3. Use the callout as part of an action in filter(s).

The first step can only be done in a kernel driver, as this is where the callout specifies its callbacks, to be
invoked by the WFP kernel engine when appropriate. The other two steps can be done from user-mode
or kernel-mode, where usually user-mode makes more sense, as it provides flexibility of use, without the
need to “disturb” the driver.

Technically, step 2 can be performed before step 1. If the callout is not registered, it will be treated as a
“blocking” callout, meaning it will block whatever operation it’s attached to.

Callout Registration

Registering a callout involves calling FwpsCalloutRegister with a callout description:

NTSTATUS FwpsCalloutRegister(

Inout void* deviceObject,

In const FWPS_CALLOUT* callout,

_Out_opt_ UINT32* calloutId);

The function requires a device object, created normally with IoCreateDevice, as we have seen many
times before. This is used to associate the callout with the device, so that the driver does not unload
prematurely if any code is still executing by one of the callout’s callbacks.

The important part of FwpsCalloutRegister is the callout structure provided:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 494

typedef struct FWPS_CALLOUT_ {

GUID calloutKey;

UINT32 flags;

FWPS_CALLOUT_CLASSIFY_FN classifyFn;

FWPS_CALLOUT_NOTIFY_FN notifyFn;

FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteFn;

} FWPS_CALLOUT;

calloutKey is a GUID used to identify the callout. This GUID should be generated once, typically with the
Create GUID tool available as part of the Visual Studio Tools menu (figure 13-15). The same GUID must
be used when adding the callout to a layer, and when using it as part of a filter action (as we’ll soon see).

Figure 13-15: The Create GUID tool

flags can be zero, or a combination of flags. The list of flags has grown, indicated by the version of
FwpsCalloutRegister called, with the associated FWPS_CALLOUT structure version. At the time of writ-
ing, FwpsCalloutRegister0 to FwpsCalloutRegister3 exist, with corresponding FWPS_CALLOUT0 to
FWPS_CALLOUT3. The data members are essentially the same (just “versioning” changes), and the flags list
extended. Here are a couple of notable flags (read the docs for the full list):

• FWP_CALLOUT_FLAG_ALLOW_OFFLOAD indicates the callout is unaffected if network data processing
is offloaded to a capable network interface card (NIC). If this is flag is not specified, off-loading will

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 495

be disabled for any processing path involving filters that use this callout. Normally, you should set
this flag.

• FWP_CALLOUT_FLAG_ENABLE_COMMIT_ADD_NOTIFY indicates the callout is able to receive notifica-
tions about objects and filters added inside a transaction. Once the transaction commits successfully,
its callbacks will be invoked.

The last three members of FWPS_CALLOUT are callbacks that are invoked when appropriate. The most
important one is classifyFn, which is the one used to “classify” in some way the request, and decide
how processing should proceed. Here is the callback’s prototype:

void ClassifyFunction(

const FWPS_INCOMING_VALUES* inFixedValues,

const FWPS_INCOMING_METADATA_VALUES* inMetaValues,

void* layerData,

const void* classifyContext,

const FWPS_FILTER* filter,

UINT64 flowContext,

FWPS_CLASSIFY_OUT* classifyOut);

It’s quite a callback, having a multitude of parameters, some of which point to their own structures.
inFixedValues are the values set for the fields of the layer this callout is part of, wrapped in a FWPS_-
INCOMING_VALUES structure:

typedef struct FWPS_INCOMING_VALUE_ {

FWP_VALUE value;

} FWPS_INCOMING_VALUE;

typedef struct FWPS_INCOMING_VALUES_ {

UINT16 layerId;

UINT32 valueCount;

FWPS_INCOMING_VALUE *incomingValue;

} FWPS_INCOMING_VALUES;

The number of values (valueCount) is the same as the number of fields in the layer, and they are provided
in order.WFP Explorer makes it easier to see the order thanks to the provided index in a layer’s properties
(see figure 13-16 with an example layer).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 496

Figure 13-16: Layer fields with indices inWFP Explorer

The field indices are also available in a set of enumerations, each enumeration describes one of the layers
with the field indices provided in the correct order. For example, here is a subset from the same layer as
shown in figure 13-16:

typedef enum FWPS_FIELDS_ALE_AUTH_CONNECT_V4_ {

FWPS_FIELD_ALE_AUTH_CONNECT_V4_ALE_APP_ID,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_ALE_USER_ID,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_ADDRESS,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_ADDRESS_TYPE,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_PORT,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_PROTOCOL,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_ADDRESS,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_PORT,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_ALE_REMOTE_USER_ID,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_ALE_REMOTE_MACHINE_ID,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_DESTINATION_ADDRESS_TYPE,

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 497

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_INTERFACE,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_FLAGS,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_INTERFACE_TYPE,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_TUNNEL_TYPE,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_INTERFACE_INDEX,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_SUB_INTERFACE_INDEX,

FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_ARRIVAL_INTERFACE,

//...

FWPS_FIELD_ALE_AUTH_CONNECT_V4_MAX

} FWPS_FIELDS_ALE_AUTH_CONNECT_V4;

Next up is inMetaValues, pointing to a structure providing some general details of the operation (com-
ments shown are from the header itself):

typedef struct FWPS_INCOMING_METADATA_VALUES_ {

// Bitmask representing which values are set.

UINT32 currentMetadataValues;

// Internal flags;

UINT32 flags;

// Reserved for system use.

UINT64 reserved;

// Discard module and reason.

FWPS_DISCARD_METADATA discardMetadata;

// Flow Handle.

UINT64 flowHandle;

// IP Header size.

UINT32 ipHeaderSize;

// Transport Header size

UINT32 transportHeaderSize;

// Process Path.

FWP_BYTE_BLOB* processPath;

// Token used for authorization.

UINT64 token;

// Process Id.

UINT64 processId;

// Source and Destination interface indices for discard indications.

UINT32 sourceInterfaceIndex;

UINT32 destinationInterfaceIndex;

// Compartment Id for injection APIs.

ULONG compartmentId;

// Fragment data for inbound fragments.

FWPS_INBOUND_FRAGMENT_METADATA fragmentMetadata;

// Path MTU for outbound packets (to enable calculation of fragments).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 498

ULONG pathMtu;

// Completion handle (required in order to be able to pend at this layer).

HANDLE completionHandle;

// Endpoint handle for use in outbound transport layer injection.

UINT64 transportEndpointHandle;

// Remote scope id for use in outbound transport layer injection.

SCOPE_ID remoteScopeId;

// Socket control data (and length) for use in outbound transport layer inje\

ction.

WSACMSGHDR* controlData;

ULONG controlDataLength;

// Direction for the current packet. Only specified for ALE re-authorization.

FWP_DIRECTION packetDirection;

// Raw IP header (and length) if the packet is sent with IP header from a RA\

W socket.

PVOID headerIncludeHeader;

ULONG headerIncludeHeaderLength;

IP_ADDRESS_PREFIX destinationPrefix;

UINT16 frameLength;

UINT64 parentEndpointHandle;

UINT32 icmpIdAndSequence;

// PID of the process that will be accepting the redirected connection

DWORD localRedirectTargetPID;

// original destination of a redirected connection

SOCKADDR* originalDestination;

HANDLE redirectRecords;

// Bitmask representing which L2 values are set.

UINT32 currentL2MetadataValues;

// L2 layer Flags;

UINT32 l2Flags;

UINT32 ethernetMacHeaderSize;

UINT32 wiFiOperationMode;

NDIS_SWITCH_PORT_ID vSwitchSourcePortId;

NDIS_SWITCH_NIC_INDEX vSwitchSourceNicIndex;

NDIS_SWITCH_PORT_ID vSwitchDestinationPortId;

HANDLE vSwitchPacketContext;

PVOID subProcessTag;

// Reserved for system use.

UINT64 reserved1;

} FWPS_INCOMING_METADATA_VALUES;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 499

I’ll mention a few useful members. First, currentMetadataValues indicates which other members have
valid information. An extension to that is currentL2MetadataValues, simply because at some point
32 flags were not enough, so more were added in Windows 8 and later. Here are a few examples for
currentMetadataValues:

• FWPS_METADATA_FIELD_PROCESS_PATH - process path of the accessing process is specified in the
processPathmember, as a FWP_BYTE_BLOB* - the same type used in an earlier section when calling
FwpmGetAppIdFromFileName.

• FWPS_METADATA_FIELD_PROCESS_ID - process ID of the accessing process given in the processId
member.

• FWPS_METADATA_FIELD_IP_HEADER_SIZE - the IP header size (in bytes) is specified in ipHeaderSize,
which indicates where the header ends and the actual packet data begins.

The next parameter to the classify function is layerData, providing the actual data that makes sense for
this layer. Some layers don’t have any associated data, so this pointer may be NULL. For a “Stream” layer
(such as FWPS_LAYER_STREAM_V4), the pointer is to a FWPS_STREAM_CALLOUT_IO_PACKET structure. In all
other cases, it points to a NET_BUFFER_LIST, which is the standard way of describing a network buffer.
Clearly, there is a lot more to look into, some of which we’ll do later in this chapter.

The next parameter, classifyContext, is an internal pointer used by the WFP infrastructure. It may be
NULL for some layers. If not-NULL, it can be used to “pend” an operation - hold on to it, until a decision
can be made later, outside of the context of the callback. This is beyond the scope of this chapter.

The next parameter, filter is the filter pointer used to invoke this callback. It’s essentially the one used
by a client code to set up this callout as an action target. Usually, filters are added from user mode
with FwpmFilterAdd, but they can be added by kernel code in exactly the same way. Here is its generic
definition (taking the version out of the equation):

typedef struct FWPS_FILTER_ {

UINT64 filterId;

FWP_VALUE weight;

UINT16 subLayerWeight;

UINT16 flags;

UINT32 numFilterConditions;

FWPS_FILTER_CONDITION *filterCondition;

FWPS_ACTION action;

UINT64 context;

FWPM_PROVIDER_CONTEXT *providerContext;

} FWPS_FILTER;

Most members were set explicitly by whoever called FwpmFilterAdd. Consult the docs for the missing
pieces.

Note that the “runtime” structures used the kernel WFP engine (starting with Fwps) are not
the same ones used by the management functions (common to user-mode and kernel-mode,
starting with Fwpm). For example, filterId in the above structure is a 64-bit value, instead of
a GUID that is used to identify a filter with the management functions.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 500

The next parameter, flowContext, represents a context associated with the data flow, if any. Some layers
don’t support data flow, which would make this parameter ignorable.

Finally, the last parameter to the classify callback, classifyOut, is a pointer to a structure where the result
of the classification should be provided directly (unless the operation is pended). This is where the final
“decision” of the callout is to be stored:

typedef struct FWPS_CLASSIFY_OUT_ {

FWP_ACTION_TYPE actionType;

UINT64 outContext; // reserved

UINT64 filterId; // reserved

UINT32 rights;

UINT32 flags;

UINT32 reserved;

} FWPS_CLASSIFY_OUT;

The most important member is actionType, where the driver decides the suggested fate of the operation.
Possible values include:

• FWP_ACTION_BLOCK - block the operation.
• FWP_ACTION_CONTINUE - pass the decision to the next filter (if any).
• FWP_ACTION_NONE and FWP_ACTION_NONE_NO_MATCH - do nothing. Effectively the same as FWP_-
ACTION_CONTINUE, but provides different semantics in case someone cares.

• FWP_ACTION_PERMIT - allow the operation to continue.

Writing to actionType is “controlled” by the rights member. If it has the value FWPS_RIGHT_ACTION_-
WRITE, then the driver is allowed to set an action in actionType. If not, the driver is permitted to set
an action of FWP_ACTION_BLOCK only to override an earlier filter’s action. Technically, a callout can
always write an action value, but it should follow the rules. A driver setting the action to block or permit
should remove the FWPS_RIGHT_ACTION_WRITE flag from rights so that subsequent filters will not likely
“interfere” with the callout’s decision.

The only remaining member of FWPS_CLASSIFY_OUT yet to be discussed is flags, which can be set to a
combination of values with the most useful being the following (see the docs for the other two possible
flags):

• FWPS_CLASSIFY_OUT_FLAG_ABSORB - the data is silently dropped. This is typical for cases where
the original packet is absorbed, to be replaced by a different one. The driver sets this value in such
cases. We’ll see an example using this flag later in this chapter.

Back to FwpsCalloutRegister and the FWPS_CALLOUT structure - the next member, notifyFn, is another
callback the driver has to provide. It’s called when filters that are using this callout are added or removed:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 501

NTSTATUS NotifyCallback(

In FWPS_CALLOUT_NOTIFY_TYPE notifyType,

In const GUID* filterKey,

Inout FWPS_FILTER* filter);

notifyType can be either FWPS_CALLOUT_NOTIFY_ADD_FILTER or FWPS_CALLOUT_NOTIFY_DELETE_-
FILTER. filterKey is the GUID identifying this filter - it’s NULL for a delete notification. Finally, filter
is the “runtime” representation of the added/removed filter (the same one we examined earlier).

The return value from the callback does not matter for a delete operation. For an add operation, STATUS_-
SUCCESS indicates the driver is OK with the filter being added. Returning other status codes will cause the
filter not to be added.

The last member in FWPS_CALLOUT is flowDeleteFn, an optional callback that is useful with data flow
requests (out of scope for this chapter). Set this member to NULL if no data flow requests are processed in
the callout.

Now that the callout is registered, it can be actively used in filters. Before the driver unloads, it should un-
register its callout(s) by calling either FwpsCalloutUnregisterById or FwpsCalloutUnregisterByKey
(whichever is more convenient):

NTSTATUS FwpsCalloutUnregisterById(_In_ const UINT32 calloutId);

NTSTATUS FwpsCalloutUnregisterByKey(_In_ const GUID* calloutKey);

The callout ID is an optional return value from FwpsCalloutRegister. The driver can store it for later
use, such as for unregistering purposes. Using the GUID of the callout is just as good.

Demo: Callout Driver

In order to put the previous section information to good use, we’ll create a callout driver that can block
certain processes from accessing the network. Looking at various fields layers have, there is no “process
ID” kind of field, which means we have to write a callout driver to accomplish this task.

The Driver

We start by creating a new WDM Empty Driver project as usual, named ProcessNetFilter. The INF file is
deleted, as it’s not needed. We’ll keep the interesting state of the driver in a global class named Globals
that will take care of all the WFP functionality (in Globals.h):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 502

#include "Vector.h"

#include "SpinLock.h"

class Globals {

public:

Globals();

static Globals& Get();

Globals(Globals const&) = delete;

Globals& operator=(Globals const&) = delete;

~Globals();

NTSTATUS RegisterCallouts(PDEVICE_OBJECT devObj);

NTSTATUS AddProcess(ULONG pid);

NTSTATUS DeleteProcess(ULONG pid);

NTSTATUS ClearProcesses();

bool IsProcessBlocked(ULONG pid) const;

NTSTATUS DoCalloutNotify(

In FWPS_CALLOUT_NOTIFY_TYPE notifyType,

In const GUID* filterKey,

Inout FWPS_FILTER* filter);

void DoCalloutClassify(

In const FWPS_INCOMING_VALUES* inFixedValues,

In const FWPS_INCOMING_METADATA_VALUES* inMetaValues,

_Inout_opt_ void* layerData,

_In_opt_ const void* classifyContext,

In const FWPS_FILTER* filter,

In UINT64 flowContext,

Inout FWPS_CLASSIFY_OUT* classifyOut);

private:

Vector<ULONG, PoolType::NonPaged> m_Processes;

mutable SpinLock m_ProcessesLock;

inline static Globals* s_Globals;

};

The vector.h header implements a simple resizable array, which will not be described in this chapter. The
m_Processes member is declared as such a vector of process IDs (ULONG) allocated from non-paged pool
(PoolType::NonPaged enumeration value, defined inMemory.h). More information on the Vector<> class
and other parts of the KTL can be found in the appendix.

A Globals pointer named g_Data is defined in Main.cpp. It’s dynamically allocated with the new operator
(overloaded) to allow the constructor to run, and by the same token, it’s deletedwith the overloaded delete

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 503

operator, causing its destructor to run.

To make it easier to access, a static variable (s_Globals) keeps track of the singleton Globals instance for
easy access from anywhere using the static Get method. Here is the relevant code from Globals.cpp:

Globals::Globals() {

s_Globals = this;

m_ProcessesLock.Init();

}

Globals& Globals::Get() {

return *s_Globals;

}

Let’s now turn our attention to the DriverEntry function. The driver creates a normal named device
object and a symbolic link in order to allow sending I/O controls for blocking and permitting network
access for process IDs. Most of the code should be very familiar at this point:

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\ProcNetFilter");

PDEVICE_OBJECT devObj;

auto status = IoCreateDevice(DriverObject, 0, &devName,

FILE_DEVICE_UNKNOWN, 0, FALSE, &devObj);

if (!NT_SUCCESS(status))

return status;

bool symLinkCreated = false;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\ProcNetFilter");

do {

g_Data = new (PoolType::NonPaged) Globals;

if (!g_Data) {

status = STATUS_NO_MEMORY;

break;

}

status = IoCreateSymbolicLink(&symLink, &devName);

if (!NT_SUCCESS(status))

break;

symLinkCreated = true;

status = g_Data->RegisterCallouts(devObj);

if (!NT_SUCCESS(status))

break;

} while (false);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 504

if (!NT_SUCCESS(status)) {

KdPrint((DRIVER_PREFIX "DriverEntry failed (0x%X)\n", status));

if (symLinkCreated)

IoDeleteSymbolicLink(&symLink);

IoDeleteDevice(devObj);

return status;

}

DriverObject->DriverUnload = ProcNetFilterUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =

DriverObject->MajorFunction[IRP_MJ_CLOSE] = ProcNetFilterCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

ProcNetFilterDeviceControl;

return STATUS_SUCCESS;

}

The unfamiliar code is the call to Globals::RegisterCallouts. Registering callouts require calling
FwpsRegisterCallout for each callout. Why would we need multiple callouts? When adding callouts
(later), a callout is added at a specific layer. If the “same” callout behavior is required in several layers,
different callouts (with different GUIDs) must be added separately. Since we’re interested in blocking
network traffics for TCP and UDP, for IPv4 and IPv6, we require four callouts, even though the callouts’
callbacks will be the same:

NTSTATUS Globals::RegisterCallouts(PDEVICE_OBJECT devObj) {

const GUID* guids[] = {

&GUID_CALLOUT_PROCESS_BLOCK_V4,

&GUID_CALLOUT_PROCESS_BLOCK_V6,

&GUID_CALLOUT_PROCESS_BLOCK_UDP_V4,

&GUID_CALLOUT_PROCESS_BLOCK_UDP_V6,

};

NTSTATUS status = STATUS_SUCCESS;

for (auto& guid : guids) {

FWPS_CALLOUT callout{};

callout.calloutKey = *guid;

callout.notifyFn = OnCalloutNotify;

callout.classifyFn = OnCalloutClassify;

status |= FwpsCalloutRegister(devObj, &callout, nullptr);

}

return status;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 505

The GUIDs of these callouts are defined in the ProcNetFilterPublic.h header, shared with user mode, as it’s
more flexible to let user mode add callouts as needed.

The unload routine deletes the g_Data object, invoking the destructor, and then deletes the symbolic link
and device object:

void ProcNetFilterUnload(PDRIVER_OBJECT DriverObject) {

delete g_Data;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\ProcNetFilter");

IoDeleteSymbolicLink(&symLink);

IoDeleteDevice(DriverObject->DeviceObject);

}

Here is the Globals destructor:

Globals::~Globals() {

const GUID* guids[] = {

&GUID_CALLOUT_PROCESS_BLOCK_V4,

&GUID_CALLOUT_PROCESS_BLOCK_V6,

&GUID_CALLOUT_PROCESS_BLOCK_UDP_V4,

&GUID_CALLOUT_PROCESS_BLOCK_UDP_V6,

};

for(auto& guid : guids)

FwpsCalloutUnregisterByKey(guid);

}

The destructor reverses the callout registration by unregistering the four callouts.

Managing Processes

Managing the process IDs that require blocking done by manipulating the Vector<>. Some functions in
the Globals class are task with this work:

NTSTATUS Globals::AddProcess(ULONG pid) {

//

// check if the process exists

//

PEPROCESS process;

auto status = PsLookupProcessByProcessId(ULongToHandle(pid), &process);

if (!NT_SUCCESS(status))

return status;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 506

{

Locker locker(m_ProcessesLock);

//

// don't add if it's already there

//

if(!m_Processes.Contains(pid))

m_Processes.Add(pid);

}

ObDereferenceObject(process);

return STATUS_SUCCESS;

}

NTSTATUS Globals::DeleteProcess(ULONG pid) {

Locker locker(m_ProcessesLock);

return m_Processes.Remove(pid) ? STATUS_SUCCESS : STATUS_NOT_FOUND;

}

NTSTATUS Globals::ClearProcesses() {

Locker locker(m_ProcessesLock);

m_Processes.Clear();

return STATUS_SUCCESS;

}

bool Globals::IsProcessBlocked(ULONG pid) const {

Locker locker(m_ProcessesLock);

return m_Processes.Contains(pid);

}

m_ProcessesLock is of type SpinLock - a spin lock wrapper we’ve used in previous chapters. Locker<>
is a generic locker we’ve used as well.

A nice touch in the AddProcess implementation is checking that the process actually exists by calling
PsLookupProcessByProcessId.

Adding, removing and clearing the processes vector is done through I/O control codes. These are defined
in ProcNetFilterPublic.h alongside the callout GUIDs:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 507

#include <initguid.h>

#define PROCNETFILTER_DEVICE 0x8003

#define IOCTL_PNF_BLOCK_PROCESS CTL_CODE(PROCNETFILTER_DEVICE, 0x800, METHOD_B\

UFFERED, FILE_ANY_ACCESS)

#define IOCTL_PNF_PERMIT_PROCESS CTL_CODE(PROCNETFILTER_DEVICE, 0x801, METHOD_B\

UFFERED, FILE_ANY_ACCESS)

#define IOCTL_PNF_CLEAR CTL_CODE(PROCNETFILTER_DEVICE, 0x802, METHOD_N\

EITHER, FILE_ANY_ACCESS)

// {5027C277-201A-4AAF-B8EC-95C05E857059}

DEFINE_GUID(GUID_CALLOUT_PROCESS_BLOCK_V4, 0x5027c277, 0x201a, 0x4aaf, 0xb8, 0x\

ec, 0x95, 0xc0, 0x5e, 0x85, 0x70, 0x59);

// {CF51FD24-566F-4C6D-9BC9-8013E9875E7E}

DEFINE_GUID(GUID_CALLOUT_PROCESS_BLOCK_V6, 0xcf51fd24, 0x566f, 0x4c6d, 0x9b, 0x\

c9, 0x80, 0x13, 0xe9, 0x87, 0x5e, 0x7e);

// {200E35C6-7182-4F9C-97DF-34028A225BEC}

DEFINE_GUID(GUID_CALLOUT_PROCESS_BLOCK_UDP_V4, 0x200e35c6, 0x7182, 0x4f9c, 0x97\

, 0xdf, 0x34, 0x02, 0x8a, 0x22, 0x5b, 0xec);

// {C8AF8E6D-1D0C-4547-A2A1-7593C3396BAF}

DEFINE_GUID(GUID_CALLOUT_PROCESS_BLOCK_UDP_V6, 0xc8af8e6d, 0x1d0c, 0x4547, 0xa2\

, 0xa1, 0x75, 0x93, 0xc3, 0x39, 0x6b, 0xaf);

Handling the IOCTLs themselves is the job of ProcNetFilterDeviceControl:

NTSTATUS ProcNetFilterDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto irpSp = IoGetCurrentIrpStackLocation(Irp);

auto const& dic = irpSp->Parameters.DeviceIoControl;

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = 0;

switch (dic.IoControlCode) {

case IOCTL_PNF_CLEAR:

status = g_Data->ClearProcesses();

break;

case IOCTL_PNF_BLOCK_PROCESS:

case IOCTL_PNF_PERMIT_PROCESS:

if (dic.InputBufferLength < sizeof(ULONG)) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 508

status = STATUS_BUFFER_TOO_SMALL;

break;

}

auto pid = *(ULONG*)Irp->AssociatedIrp.SystemBuffer;

status = dic.IoControlCode == IOCTL_PNF_BLOCK_PROCESS ?

g_Data->AddProcess(pid) : g_Data->DeleteProcess(pid);

if (NT_SUCCESS(status))

info = sizeof(ULONG);

break;

}

return CompleteRequest(Irp, status, info);

}

The above code should be familiar by now. CompleteRequest is a helper function we used before that
simply completes an IRP given an optional status and information:

NTSTATUS CompleteRequest(

PIRP Irp, NTSTATUS status = STATUS_SUCCESS, ULONG_PTR info = 0);

NTSTATUS CompleteRequest(PIRP Irp, NTSTATUS status, ULONG_PTR info) {

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = info;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

Callout Callbacks

The most interesting part in the driver is obviously the WFP related code. The callout registration done
previously points the notify and classify callouts to OnCalloutNotify and OnCalloutClassify, respec-
tively.
These two functions simply delegate their work to instance members of the Globals class so it would be
easier to access the class members:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 509

NTSTATUS OnCalloutNotify(FWPS_CALLOUT_NOTIFY_TYPE notifyType,

const GUID* filterKey, FWPS_FILTER* filter) {

return Globals::Get().DoCalloutNotify(notifyType, filterKey, filter);

}

void OnCalloutClassify(const FWPS_INCOMING_VALUES* inFixedValues,

const FWPS_INCOMING_METADATA_VALUES* inMetaValues,

void* layerData, const void* classifyContext, const FWPS_FILTER* filter,

UINT64 flowContext, FWPS_CLASSIFY_OUT* classifyOut) {

Globals::Get().DoCalloutClassify(inFixedValues, inMetaValues,

layerData, classifyContext, filter, flowContext, classifyOut);

}

The real work is done in themember functionswith the names DoCalloutNotify and DoCalloutClassify.

The notify callback is mostly uninteresting, but must be implemented. The code just outputs the fact that
a filter has been added or removed with its GUID if available:

NTSTATUS Globals::DoCalloutNotify(FWPS_CALLOUT_NOTIFY_TYPE notifyType,

const GUID* filterKey, FWPS_FILTER* filter) {

UNREFERENCED_PARAMETER(filter);

UNICODE_STRING sguid = RTL_CONSTANT_STRING(L"<Noguid>");

if (filterKey)

RtlStringFromGUID(*filterKey, &sguid);

if (notifyType == FWPS_CALLOUT_NOTIFY_ADD_FILTER) {

KdPrint((DRIVER_PREFIX "Filter added: %wZ\n", sguid));

}

else if (notifyType == FWPS_CALLOUT_NOTIFY_DELETE_FILTER) {

KdPrint((DRIVER_PREFIX "Filter deleted: %wZ\n", sguid));

}

if (filterKey)

RtlFreeUnicodeString(&sguid);

return STATUS_SUCCESS;

}

In most cases, the fact the filters are added or removed (that use on of the driver’s callouts) is not important.
Still, it may be useful in certain cases. For example, the driver can keep track of how many filters are
currently using the driver for logging or other purposes.

The above code uses the helper RtlStringFromGUID API provided by the kernel to convert a GUID into a
UNICODE_STRING. Memory is allocated by the routine, so RtlFreeUnicodeString must be called to free

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 510

the string. Note that in some cases the GUID of the filter is not provided, so care must be taken not to pass
a NULL GUID to RtlStringFromGUID, as it will crash the system.

The most important callback is the classify one. Its job is to determine if the request should be blocked.
First, we need to check if a process ID is available as part of the “metadata” fields:

void Globals::DoCalloutClassify(const FWPS_INCOMING_VALUES* inFixedValues,

const FWPS_INCOMING_METADATA_VALUES* inMetaValues,

void* layerData, const void* classifyContext, const FWPS_FILTER* filter,

UINT64 flowContext, FWPS_CLASSIFY_OUT* classifyOut) {

UNREFERENCED_PARAMETER(flowContext);

UNREFERENCED_PARAMETER(inFixedValues);

UNREFERENCED_PARAMETER(layerData);

UNREFERENCED_PARAMETER(filter);

UNREFERENCED_PARAMETER(classifyContext);

//

// search for the PID (if available)

//

if ((inMetaValues->currentMetadataValues & FWPS_METADATA_FIELD_PROCESS_ID)

== 0) return;

Now that we know a process ID is available, we’ll check if it’s on our list of PIDs to block:

bool block;

{

Locker locker(m_ProcessesLock);

block = m_Processes.Contains((ULONG)inMetaValues->processId);

}

The spin lock is acquired for the minimum possible interval, as multiple classify callbacks may be running
at the same time. A spin lock is used (and not a fast mutex), because the classify callback is invoked at
IRQL DISPATCH_LEVEL (2).

If we need to block, we set the action to “block” and tell downstream filters not to change the outcome:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 511

if(block) {

//

// block

//

classifyOut->actionType = FWP_ACTION_BLOCK;

//

// ask other filters from overriding the block

//

classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

KdPrint((DRIVER_PREFIX "Blocked process %u\n",

(ULONG)inMetaValues->processId));

}

Removing the FWPS_RIGHT_ACTION_WRITE bit in the rights member is critical - otherwise next callouts
in the chain might change the action to “permit”. It’s OK to change a “permit” action to “block” - but not
vice-versa. Here is the full classify callout implementation for easier reference (comments removed):

void Globals::DoCalloutClassify(const FWPS_INCOMING_VALUES* inFixedValues,

const FWPS_INCOMING_METADATA_VALUES* inMetaValues,

void* layerData, const void* classifyContext, const FWPS_FILTER* filter,

UINT64 flowContext, FWPS_CLASSIFY_OUT* classifyOut) {

UNREFERENCED_PARAMETER(flowContext);

UNREFERENCED_PARAMETER(inFixedValues);

UNREFERENCED_PARAMETER(layerData);

UNREFERENCED_PARAMETER(filter);

UNREFERENCED_PARAMETER(classifyContext);

if ((inMetaValues->currentMetadataValues & FWPS_METADATA_FIELD_PROCESS_ID)

== 0) return;

bool block;

{

Locker locker(m_ProcessesLock);

block = m_Processes.Contains((ULONG)inMetaValues->processId);

}

if(block) {

classifyOut->actionType = FWP_ACTION_BLOCK;

classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

KdPrint((DRIVER_PREFIX "Blocked process %u\n",

(ULONG)inMetaValues->processId));

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 512

}

}

In order for the driver to link successfully, the fwpkclnt.lib import library must be added to the Linker’s
Input tab (see figure 13-17).

You may try to add the import through a pragma like so: #pragma comment(lib,
"fwpkclnt"). This

does not have the desired effect. For some reason, this pragma only seems to work in user-mode projects.

Figure 13-17: WFP kernel client library

For completeness, the driver should keep track of process destruction, and remove a destroyed
process from the list of blocked processes (if listed). Add code to accomplish that.

Demo: User-Mode Client

The user-mode client needs to add the callouts to the correct layers, and add filters that use these callouts
- otherwise the callouts play no role.

The project is a standard console application named BlockProcess. The main function starts by examining
the command line:

int main(int argc, const char* argv[]) {

if (argc < 2) {

printf("Usage: blockprocess <block | permit | clear> [pid]\n");

return 0;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 513

Next, it adds a new WFP provider to the system, to make it easier to identify callouts and filters that
“belong” to the provider. Providers don’t play an active role in WFP, but they are useful for identifying
different “sources” of filters or callouts:

if (DWORD error = RegisterProvider(); error != ERROR_SUCCESS) {

printf("Error registering provider (%u)\n", error);

return 1;

}

The feature where an initialization is permitted before a test with a semicolon in between as
seen above is available from C++ 17. It also works with a switch statement. It’s useful in
keeping the variable (error in the above code) constrained in scope of the if statement (and
an else statement if exists).

Defining a provider requires generating a GUID to uniquely identofy the provider. Here is the GUID
defined at the top of the BlockProcess.cpp file:

// {7672D055-03C0-43F1-9E31-0392850BD07F}

DEFINE_GUID(WFP_PROVIDER_CHAPTER13,

0x7672d055, 0x3c0, 0x43f1, 0x9e, 0x31, 0x3, 0x92, 0x85, 0xb, 0xd0, 0x7f);

Registering a provider must be done (as most operations) against the WFP engine:

DWORD RegisterProvider() {

HANDLE hEngine;

DWORD error = FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT,

nullptr, nullptr, &hEngine);

if (error)

return error;

Working with theWFP engine would require opening and closing it with code easily repeated. This project
just repeats the code, but a good idea would be to create a wrapper class for the WFP engine. You can find
one such example in the source code ofWFP Explorer.

Next, we can check if the provider has already been registered. If so, no further action is needed. Otherwise,
we go ahead and register it:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 514

FWPM_PROVIDER* provider;

error = FwpmProviderGetByKey(hEngine, &WFP_PROVIDER_CHAPTER13, &provider);

if (error != ERROR_SUCCESS) {

FWPM_PROVIDER reg{};

WCHAR name[] = L"WKP2 Chapter 13";

reg.displayData.name = name;

reg.providerKey = WFP_PROVIDER_CHAPTER13;

reg.flags = FWPM_PROVIDER_FLAG_PERSISTENT;

error = FwpmProviderAdd(hEngine, ®, nullptr);

}

else {

FwpmFreeMemory((void**)&provider);

}

If locating the provider by GUID (FwpmProviderGetByKey) fails, we need to fill a FWPM_PROVIDER struc-
ture. The display name is mandatory and so is the GUID used to uniquely identify it. The FWPM_PROVIDER_-
FLAG_PERSISTENT flag keeps the provider registered even if the system restarts. This is mostly needed if
callouts/filters are needed at early stages of Windows boot before any user-mode code has any chance of
running.

Finally, the engine should be closed:

FwpmEngineClose(hEngine);

return error;

}

Back to main. The next item on the agenda is opening a handle to the device. Without that, there are no
registered callouts:

HANDLE hDevice = CreateFile(L"\\\\.\\ProcNetFilter",

GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {

printf("Error opening device (%u)\n", GetLastError());

return 1;

}

Now we can add the four callouts if not yet added:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 515

if (!AddCallouts()) {

printf("Error adding callouts\n");

return 1;

}

Adding the callouts allows them to be used in filters. If no filter is referencing the callouts, they are
essentially useless.

AddCallouts opens a handle to the engine, and looks for one of the callouts. If it’s already added, there is
nothing else to do:

bool AddCallouts() {

HANDLE hEngine;

DWORD error = FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT,

nullptr, nullptr, &hEngine);

if (error)

return false;

do {

if (FWPM_CALLOUT* callout; FwpmCalloutGetByKey(hEngine,

&GUID_CALLOUT_PROCESS_BLOCK_V4, &callout) == ERROR_SUCCESS) {

FwpmFreeMemory((void**)&callout);

break;

}

Otherwise, the callouts must be added to the correct layers:

const struct {

const GUID* guid;

const GUID* layer;

} callouts[] = {

{ &GUID_CALLOUT_PROCESS_BLOCK_V4, &FWPM_LAYER_ALE_AUTH_CONNECT_V4 },

{ &GUID_CALLOUT_PROCESS_BLOCK_V6, &FWPM_LAYER_ALE_AUTH_CONNECT_V6 },

{ &GUID_CALLOUT_PROCESS_BLOCK_UDP_V4, &FWPM_LAYER_ALE_RESOURCE_ASSIGNME\

NT_V4 },

{ &GUID_CALLOUT_PROCESS_BLOCK_UDP_V6, &FWPM_LAYER_ALE_RESOURCE_ASSIGNME\

NT_V6 },

};

error = FwpmTransactionBegin(hEngine, 0);

if (error) break;

for (auto& co : callouts) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 516

FWPM_CALLOUT callout{};

callout.applicableLayer = *co.layer;

callout.calloutKey = *co.guid;

WCHAR name[] = L"Block PID callout";

callout.displayData.name = name;

callout.providerKey = (GUID*)&WFP_PROVIDER_CHAPTER13;

FwpmCalloutAdd(hEngine, &callout, nullptr, nullptr);

}

error = FwpmTransactionCommit(hEngine);

} while (false);

Each callout is added to the appropriate layer. For block/permit operations, the FWPM_LAYER_ALE_AUTH_-
CONNECT_V4/6 layer are the ones to use for TCP and FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4/6 for
UDP. The WFP documentation lists all the available layers with their meaning.

For each callout, a display name is mandatory and so are the callout unique key (GUID) and the appli-
cable layer. Filters added to this layer(s) only can use these callouts. The provider is set as well for easy
identification.

Performing multiple operations against the engine can be done within the scope of a transaction that
adheres to the classic “ACID” properties (atomicity, consistency, isolation and durability), meaning that
either all operations within the transaction succeed or none do. FwpmTransactionbegin initiates a trans-
action and FwpmTransactionCommit commits it. FwpmTransactionAbort is available if aborting the
transaction is desired. If the engine is closed prematurely, any transactions are aborted.

Finally, the engine is properly closed:

FwpmEngineClose(hEngine);

return error == ERROR_SUCCESS;

}

Back to main. The next thing to do is examine the command line arguments, and forward to the correct
function for handling:

bool success = false;

if (_stricmp(argv[1], "block") == 0 && argc > 2) {

success = BlockProcess(hDevice, atoi(argv[2]));

}

else if (_stricmp(argv[1], "permit") == 0 && argc > 2) {

success = PermitProcess(hDevice, atoi(argv[2]));

}

else if (_stricmp(argv[1], "clear") == 0) {

success = ClearAll(hDevice);

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 517

else {

printf("Unknown or bad command.\n");

return 1;

}

if (success)

printf("Operation completed successfully.\n");

else

printf("Error occurred: %u\n", GetLastError());

CloseHandle(hDevice);

return 0;

}

Let’s examine each in turn, starting with BlockProcess. Its purpose is to add a PID to the list of blocked
processes. First, it needs to add filters to the four layers if these have not been added before:

bool BlockProcess(HANDLE hDevice, DWORD pid) {

if (!AddFilters()) {

printf("Failed to add filters\n");

return false;

}

We need to add the filters just once, since they can serve any number of process IDs. This means it will be
easier to give these four filters known GUIDs that we can then reference as needed. The following is set
up at the top of BlockProcess.cpp:

// {C5C2DEC4-C0CD-4187-9BE9-C749ED53549D}

DEFINE_GUID(GUID_FILTER_V4, 0xc5c2dec4, 0xc0cd, 0x4187, 0x9b, 0xe9, 0xc7, 0x49,\

0xed, 0x53, 0x54, 0x9d);

// {9E99EFD3-8E9E-496B-8F6D-63A69D2E84A7}

DEFINE_GUID(GUID_FILTER_V6, 0x9e99efd3, 0x8e9e, 0x496b, 0x8f, 0x6d, 0x63, 0xa6,\

0x9d, 0x2e, 0x84, 0xa7);

// {EE870CB6-7D26-4580-A8F4-8CA7783A98F9}

DEFINE_GUID(GUID_FILTER_UDP_V4, 0xee870cb6, 0x7d26, 0x4580, 0xa8, 0xf4, 0x8c, 0\

xa7, 0x78, 0x3a, 0x98, 0xf9);

// {C8EB1629-B3C7-4A37-95F5-1DA3495EC8F5}

DEFINE_GUID(GUID_FILTER_UDP_V6, 0xc8eb1629, 0xb3c7, 0x4a37, 0x95, 0xf5, 0x1d, 0\

xa3, 0x49, 0x5e, 0xc8, 0xf5);

The alternative would be to let WFP assign GUIDs to added filters, but that would mean locating them
would be more difficult, as it would require enumerating all filters and looking at the callout GUID they
point to (if any), and/or identifying the provider.

The first step in AddFilters is checking if one was added before, and aborting if so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 518

bool AddFilters() {

HANDLE hEngine;

DWORD error = FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT,

nullptr, nullptr, &hEngine);

if (error)

return false;

do {

if (FWPM_FILTER* filter; FwpmFilterGetByKey(hEngine,

&GUID_FILTER_V4, &filter) == ERROR_SUCCESS) {

FwpmFreeMemory((void**)&filter);

break;

}

To add the filters, we open a transaction and call FwpmFilterAdd to add the four filters with their associ-
ated layers:

static const struct {

const GUID* guid;

const GUID* layer;

const GUID* callout;

} filters[] = {

{ &GUID_FILTER_V4, &FWPM_LAYER_ALE_AUTH_CONNECT_V4, &GUID_CALLOUT_PROCE\

SS_BLOCK_V4 },

{ &GUID_FILTER_V6, &FWPM_LAYER_ALE_AUTH_CONNECT_V6, &GUID_CALLOUT_PROCE\

SS_BLOCK_V6 },

{ &GUID_FILTER_UDP_V4, &FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4, &GUID_CA\

LLOUT_PROCESS_BLOCK_UDP_V4 },

{ &GUID_FILTER_UDP_V6, &FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6, &GUID_CA\

LLOUT_PROCESS_BLOCK_UDP_V6 },

};

error = FwpmTransactionBegin(hEngine, 0);

if (error)

break;

for (auto& fi : filters) {

FWPM_FILTER filter{};

filter.filterKey = *fi.guid;

filter.providerKey = (GUID*)&WFP_PROVIDER_CHAPTER13;

WCHAR filterName[] = L"Block filter based on PID";

filter.displayData.name = filterName;

filter.weight.uint8 = 8;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 519

filter.weight.type = FWP_UINT8;

filter.layerKey = *fi.layer;

filter.action.type = FWP_ACTION_CALLOUT_UNKNOWN;

filter.action.calloutKey = *fi.callout;

FwpmFilterAdd(hEngine, &filter, nullptr, nullptr);

}

error = FwpmTransactionCommit(hEngine);

} while (false);

For every filter, we set its unique key (filterKey member), a display name, our provider, a weight of 8
(“medium” weight), the layer GUID, and the action. The action bears some explanation.

The action has two parts - the type, and an optional callout key. Here are the valid values for the type
member when adding filters:

• FWP_ACTION_BLOCK - block the operation.
• FWP_ACTION_PERMIT - allow the operation.
• FWP_ACTION_CALLOUT_TERMINATING - use a callout (provided in the calloutKeymember), and the
callout must classify with “block” or “permit”.

• FWP_ACTION_CALLOUT_INSPECTION - use a callout, that will not block nor permit - it will merely
examine the request.

• FWP_ACTION_CALLOUT_UNKNOWN - use a callout that could have in any kind of outcome.

FWP_ACTION_BLOCK and FWP_ACTION_PERMIT only make sense if conditions are applied to the filter. Oth-
erwise, they will categorically deny or permit everything. We’ve seen an example of using FWP_ACTION_-
BLOCK with a condition that involves an application ID at the beginning of this chapter to block a “calcu-
lator” application from accessing the network.

In our case, we use a callout, and since we only block if needed (and do nothing otherwise), the FWP_-
ACTION_CALLOUT_UNKNOWN value is the safest to use.

After the filters are added (if needed), BlockProcess sends the request to the driver. Here is the full
function:

bool BlockProcess(HANDLE hDevice, DWORD pid) {

if (!AddFilters()) {

printf("Failed to add filters\n");

return false;

}

DWORD ret;

return DeviceIoControl(hDevice, IOCTL_PNF_BLOCK_PROCESS, &pid, sizeof(pid),

nullptr, 0, &ret, nullptr);

}

Similarly, PermitProcess removes a PID from the list of blocked processes by contacting the driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 520

bool PermitProcess(HANDLE hDevice, DWORD pid) {

DWORD ret;

return DeviceIoControl(hDevice, IOCTL_PNF_PERMIT_PROCESS, &pid, sizeof(pid)\

,

nullptr, 0, &ret, nullptr);

}

Finally, ClearAll deletes all filters and callouts, since they might not be needed anymore, and then tells
the driver to clear its list of blocked processes:

bool ClearAll(HANDLE hDevice) {

DeleteFilters();

DeleteCallouts();

DWORD ret;

return DeviceIoControl(hDevice, IOCTL_PNF_CLEAR,

nullptr, 0, nullptr, 0, &ret, nullptr);

}

DeleteFilters and DeleteCallouts open a handle to the WFP engine and call the appropriate API to
delete a filter/callout by key:

bool DeleteFilters() {

HANDLE hEngine;

DWORD error = FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT,

nullptr, nullptr, &hEngine);

if (error)

return false;

FwpmFilterDeleteByKey(hEngine, &GUID_FILTER_V4);

FwpmFilterDeleteByKey(hEngine, &GUID_FILTER_V6);

FwpmFilterDeleteByKey(hEngine, &GUID_FILTER_UDP_V4);

FwpmFilterDeleteByKey(hEngine, &GUID_FILTER_UDP_V6);

FwpmEngineClose(hEngine);

return true;

}

bool DeleteCallouts() {

HANDLE hEngine;

DWORD error = FwpmEngineOpen(nullptr, RPC_C_AUTHN_DEFAULT,

nullptr, nullptr, &hEngine);

if (error)

return false;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 521

FwpmCalloutDeleteByKey(hEngine, &GUID_CALLOUT_PROCESS_BLOCK_V4);

FwpmCalloutDeleteByKey(hEngine, &GUID_CALLOUT_PROCESS_BLOCK_V6);

FwpmCalloutDeleteByKey(hEngine, &GUID_CALLOUT_PROCESS_BLOCK_UDP_V4);

FwpmCalloutDeleteByKey(hEngine, &GUID_CALLOUT_PROCESS_BLOCK_UDP_V6);

FwpmEngineClose(hEngine);

return true;

}

Testing

The driver is installed in the usual way using the sc.exe tool (running elevated), and then started:

sc.exe create procnetfilter type= kernel binPath= <path_to_sys_file>

sc.exe start procnetfilter

As an example, I ran calculator, but this time issued a block command based on its process id:

blockprocess block 10368

And verified that calculator is unable to update its currency exchange rates. Opening WFP Explorer and
examining the callouts view shows the four added callouts (figure 13-18).

Figure 13-18: The added callouts

Similarly, we expect four filters to be added using these callouts (filters view inWFP Explorer, see figure
13-19).

Figure 13-19: The added filters

You can now use the permit option to remove a process from being blocked:

blockprocess permit 10368

Or remove all processes from being blocked:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 13: The Windows Filtering Platform 522

blockprocess clear

Debugging

TheWFP Explorer tool proved to be very useful in debugging. Making sure the correct callouts and filters
are being added is easy to see with this tool. Of course, you can write your own tools that are more specific
to the task at hand. The WFP management API is fairly intuitive to use and is documented well enough.
Youmay find the source code ofWFP Explorer (https://github.com/zodiacon/WFPExplorer) useful for your
own work with the management API.

Summary

WFP is a powerful platform that provides lots of flexibility in filtering network requests. In this chapter,
we scratched the surface of WFP, but obviously there is a lot more, such as pending network operations,
examining actual packets, and even modifying packets. All these will have to wait for another book.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/zodiacon/WFPExplorer

Chapter 14: Introduction to KMDF
The Kernel Mode Driver Framework (KMDF) was first available with Windows Vista, and later ported to
Windows XP and even Windows 2000. Its purpose is to provide a higher level of abstraction over WDM
for the purpose of building drivers for hardware devices.

Up until now, we have used WDM only for writing drivers. This is perfectly acceptable since our drivers
were not dealingwith hardware devices. Using KMDF towrite non-hardware drivers hasmarginal benefits,
and at least one disadvantage, as it adds a dependency to the driver with potentially little value.

In this chapter, we’ll examine the fundamentals of KMDF, and see how we can create the Booster driver
from chapter 4 using KMDF. We will get some advantages when using KMDF, such as seeing (and man-
aging) our device in Device Manager.

In this chapter:

• Introduction to WDF
• Introduction to KMDF
• Object Creation
• The Booster KMDF Driver
• The INF File
• The User-Mode Client
• Installing and Testing
• Registering a Device Class
• Summary

Introduction to WDF

TheWindows Driver Model (WDM) we have been using throughout this book was released withWindows
2000 and Windows 98 (“Consumer Windows”) as a way to write source-compatible drivers for these
two platforms. Windows NT 4 and Windows 95 had different driver models making it more difficult
for hardware vendors to release drivers, as two separate drivers had to be written that did not share any
code.

WithWDM, many types of kernel drivers for hardware devices could be written with a shared source code,
being compiled separately onWindows 2000 andWindows 98. This mostly worked well and made it easier
for hardware vendors to build kernel drivers for their hardware. The same process applied to subsequent
operating systems, being Windows XP and Windows ME.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 524

Obviously, today the Consumer Windows line of operating systems is no more, so the source code com-
patibility provided by WDM is no longer a true advantage. With time, some deficiencies of WDM were
showing. The most important one was lack of built-in support for handling Plug & Play and Power
Management IRPs properly. Most WDM drivers would copy such code from existing Microsoft samples
that were close to what they needed, adjusting the code to the specifics of their hardware. In some cases,
this “boilerplate” Plug & Play and Power code contributes to 50% of the entire driver’s source code.

Microsoft realized that WDM is too low-level for hardware-based drivers, so they came up with the
Windows Driver Frameworks (WDF), formerly known as Windows Driver Foundation as a solution to
these issues. WDF’s first version was released in 2006, coinciding with the release of Windows Vista. WDF
consists of two parts:

• KMDF - the replacement of WDM; it’s a library that layers on top of WDM; WDM is still the
fundamental kernel driver model in Windows.

• UMDF - the User Mode Driver Framework, which allows certain types of drivers to be written in
user mode.

UMDF is not in scope of this book as it’s about writing driver in user-mode, contrary to what this book is
about. See the sidebar for more on UMDF.

UMDF
UMDF allows writing drivers for relatively slow hardware devices, such as USB, in user-mode. Writing
driver in user mode has several advantages:

• No system crash can ever happen, meaning the robustness of the system is maintained.
• Testing and debugging is easier, and can be done on the same machine.

A UMDF driver is a normal user-mode DLL, hosted by a system-provided host process, UMDFHost.Exe.
If the DLL causes an exception to occur, the host process could crash, but the system remains intact. The
driver then can be reloaded into a new host instance.
UMDF has two fundamental versions:

• Versions 1.x are based on the Component Object Model (COM), requiring the driver to implement
various interfaces, while also getting implemented framework interfaces.

• Versions 2.x, supported from Windows 8.1 only, use the same APIs as KMDF, so that moving
between KMDF and UMDF (in both directions) is much easier.

Does using UMDF imply that it’s possible to access kernel APIs from user-mode? No. The UMDF APIs
communicate with a Reflector driver that sits in kernel mode, provided by Microsoft, which is the “go
to guy” of the UMDF driver, for performing operations in kernel-mode; the fundamental rules cannot be
broken.

UMDF is suitable for slow devices but is not good enough for devices that require handling of interrupts
or other high-performance requirements, such as devices for PCI Express. Such drivers must be written
as kernel mode drivers.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 525

WDF has been opened-source by Microsoft, and is available at https://github.com/microsoft/Windows-
Driver-Frameworks. It’s even possible to step into this source code while debugging.

Introduction to KMDF

KMDF is a library, a layer on top of WDM. Every KMDF driver starts its life as a WDM driver. “Trans-
forming” the driver into KMDF happens when a KMDF driver object is created in DriverEntry. Some of
the benefits of KMDF include:

• Boilerplate Plug & Play and Power Management implemented within the framework.
• Consistent object model based on properties, methods and events (Callbacks).
• APIs have consistent naming conventions.
• Object hierarchy support and lifetime management using reference counting.
• Major versions of the framework can run side-by-side.

The KMDF header file to include is wdf.h, which should follow <ntddk.h> or <ntifs.h>, as it depends on
their definitions.

KMDF Objects

Objects are the basis of KMDF. Although the APIs are C-based, their management and naming is object
based. Example objects include driver, devices, queues and requests. Some object types correspond direc-
tory to their underlyingWDM object (such as devices and requests), but others are new, providing a higher
level of abstraction over some functionality. Each object is accessed via its API, while the object itself is
provided as a “handle”, rather than a true pointer to a structure.

KMDF is implemented with C++, so each “handle” does correspond to a C++ object.

Objects have properties, methods, and events, having the following attributes:

• Properties - replace direct field access. Function names include Get or Set as part of the name
(for properties that cannot fail), or Assign/Retrieve for properties that may fail. The format for
property APIs is Wdf<Objetct>Set/Get/Assign/Retrieve<Desc>

• Methods - perform operations on objects. Naturally, these can have return values. Methods have the
format Wdf<ObjectType><Operation>

• Events - can be registered by the driver, providing a callback to handle some scenario. Event names
have the format Evt<ObjectType><Event>

Figure 14-1 shows the KMDF object hierarchy with the “handle” names for the various object types
supported. We’ll use some of these object types later on, when we write a KMDF-equivalent driver to
the Booster driver from chapter 4.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/microsoft/Windows-Driver-Frameworks
https://github.com/microsoft/Windows-Driver-Frameworks

Chapter 14: Introduction to KMDF 526

Figure 14-1: KMDF Object Hierarchy

KMDF objects are reference counted. Normally, the driver writer does not have to explicitly manage that
lifetime, as a parent object will “release” its child objects when the parent is destroyed. Since all objects are
somewhere in a hierarchy, manual referencing or dereferencing is not needed. There are cases, however,
that a driver may wish to extend the lifetime of an object. For example, the driver might wish to log some
information related to a KMDF object asynchronously using a work item. For this purpose KMDF provides
two generic lifetime-management APIs:

void WdfObjectReference(WDFOBJECT object);

void WdfObjectDereference(WDFOBJECT object);

Every KMDF object supports two events related to its lifetime: EvtObjectCleanup and EvtObjectDestroy.
The EvtObjectDestroy callback is invoked just before the object is destroyed - its reference count is zero.
EvtObjectCleanup is raised earlier, when the object is in the process of being deleted, but there still
might be outstanding references to it. The object should release any references it holds to other objects.
The primary use case of this event is to break circular references, which is the primary concern in any
reference-counting system.

Core Object Types

The most important and useful object types in KMDF are the following:

• WDFDRIVER - represents the driver. It’s a wrapper over the WDM DRIVER_OBJECT object provided
in DriverEntry. Creating a WDFDRIVER “transforms” the driver in KMDF.

• WDFDEVICE - represents a device (logical or physical). It’s a wrapper around aWDM DEVICE_OBJECT.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 527

• WDFQUEUE - represents a queue of requests. There is no WDM equivalent to this object type, as
its purpose is to allow handling IRPs in a driver-selected way. It supports three types of queues:
sequential, parallel, and manual.

• WDFREQUEST - represents a request. It’s a wrapper over a WDM IRP.

Object Creation

KMDF makes it relatively easy to create objects, as it follows a consistent pattern for all object types. Here
is the WdfDriverCreate API as an example:

NTSTATUS WdfDriverCreate(

In PDRIVER_OBJECT DriverObject,

In PCUNICODE_STRING RegistryPath,

_In_opt_ PWDF_OBJECT_ATTRIBUTES DriverAttributes,

In PWDF_DRIVER_CONFIG DriverConfig,

_Out_opt_ WDFDRIVER* Driver);

The function starts with mandatory parameters (DriverObject and RegistryPath in this case), followed
by two data structures. The first (WDF_OBJECT_ATTRIBUTES) is generic and appears in every “Create”
KMDF API. The second is a specific structure for further customization (WDF_DRIVER_CONFIG in this case).

The generic structure pointer can be NULL, providing “default” behavior. Here is its declaration (with the
source-provided comments intact):

typedef struct _WDF_OBJECT_ATTRIBUTES {

//

// Size in bytes of this structure

//

ULONG Size;

//

// Function to call when the object is deleted

//

PFN_WDF_OBJECT_CONTEXT_CLEANUP EvtCleanupCallback;

//

// Function to call when the objects memory is destroyed when the

// the last reference count goes to zero

//

PFN_WDF_OBJECT_CONTEXT_DESTROY EvtDestroyCallback;

//

// Execution level constraints for Object

//

WDF_EXECUTION_LEVEL ExecutionLevel;

//

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 528

// Synchronization level constraint for Object

//

WDF_SYNCHRONIZATION_SCOPE SynchronizationScope;

//

// Optional Parent Object

//

WDFOBJECT ParentObject;

//

// Overrides the size of the context allocated as specified by

// ContextTypeInfo->ContextSize

//

size_t ContextSizeOverride;

//

// Pointer to the type information to be associated with the object

//

PCWDF_OBJECT_CONTEXT_TYPE_INFO ContextTypeInfo;

} WDF_OBJECT_ATTRIBUTES, *PWDF_OBJECT_ATTRIBUTES;

Most of the members are self-explanatory, but not all. When using it, it’s recommended to start with a
sensible instance - this is what the WDF_OBJECT_ATTRIBUTES_INIT inline function is for:

VOID WDF_OBJECT_ATTRIBUTES_INIT(_Out_ PWDF_OBJECT_ATTRIBUTES Attributes);

Its source is provided directly - it sets the Sizemember to the sizeof the structure, zeroes out everything,
and then sets twomembers to specific values: ExecutionLevel to WdfExecutionLevelInheritFromParent
and SynchronizationScope to WdfSynchronizationScopeInheritFromParent, both of which can be
considered “default”. These enumerations define the value zero to be invalid.

Using WDF_OBJECT_ATTRIBUTES_INIT is not needed if nothing needs to change - passing WDF_NO_-
OBJECT_ATTRIBUTES (defined as NULL) for this pointer to the creation function is sufficient. Notice the
EvtCleanupCallback and EvtDestroyCallback discussed earlier; this is where you would set these if
needed.

Back to WdfDriverCreate - The second structure is a more specific one, where there is always a helper
macro to initialize it - WDF_DRIVER_CONFIG_INIT in this case. It takes the “config” structure, and required
parameters. After initialization, you can change other members in the structure. The WDF_DRIVER_CONFIG
structure is defined like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 529

typedef struct _WDF_DRIVER_CONFIG {

//

// Size of this structure in bytes

//

ULONG Size;

//

// Event callbacks

//

PFN_WDF_DRIVER_DEVICE_ADD EvtDriverDeviceAdd;

PFN_WDF_DRIVER_UNLOAD EvtDriverUnload;

//

// Combination of WDF_DRIVER_INIT_FLAGS values

//

ULONG DriverInitFlags;

//

// Pool tag to use for all allocations made by the framework on behalf of

// the client driver.

//

ULONG DriverPoolTag;

} WDF_DRIVER_CONFIG, *PWDF_DRIVER_CONFIG;

The fact that only the driver’s “add device” handler is required in WDF_DRIVER_CONFIG_INIT (discussed
later) indicates that the other members have sensible defaults.

The final parameter to a creation function is the resulting object handle. In the case of WdfDriverCreate
it’s a WDFDRIVER* where the result should land. This last parameter is optional - specifying NULL, or more
elegantly WDF_NO_HANDLE indicates the caller is not interested in the resulting handle. This is typical for
cases where the handle can later be retrieved independently. We’ll see both cases later on.

Once the “pattern” of creation functions is understood, it makes it relatively easy to use any creation
function. Here is another example, to solidify the pattern:

NTSTATUS WdfIoQueueCreate(

In WDFDEVICE Device,

In PWDF_IO_QUEUE_CONFIG Config,

_In_opt_ PWDF_OBJECT_ATTRIBUTES QueueAttributes,

_Out_opt_ WDFQUEUE* Queue);

WdfIoQueueCreate is used for creating queues - we’ll see a concrete example later - it has the ingre-
dients discussed before: required parameters (Device), a specific structure (WDF_IO_QUEUE_CONFIG) ini-
tialized withWDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE or WDF_IO_QUEUE_CONFIG_INIT (some extra
flexibility here), and then the generic object attributes structure (QueueAttributes), with the final pa-
rameter being the returned queue handle. The two structures seem to be in reverse order compared to
WdfDriverCreate - there is no good reason that I could find for this discrepancy.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 530

Context Memory

When creating a device object inWDM, a device extension size can be speicfiedwith the second argumnent
to IoCreateDevice. If the value is non-zero, the kernel will allocate the additional bytes at the end of the
DEVICE_OBJECT structure and point the DeviceExtension member to the beginning of that block.

KMDF extends this idea by allowing any KMDF object to be associated with driver-specific memory block
(context). This makes it easy to track any required state along with an associated object. The first step in
allocating a some context memory associated with a KMDF object is to define the structure of that extra
memory. For example:

struct MyDeviceContext {

// members

};

Then, use a macro provided by KMDF that conveniently creates a function for accessing the memory:

WDF_DECLARE_CONTEXT_TYPE_WITH_NAME(MyDeviceContext, DeviceGetContext)

The macro creates the function DeviceGetContext that can be used to retrieve a pointer to the data
(MyDeviceContext) after allocation. To make the actual allocation, the context size must be specified
within the generic WDF_OBJECT_ATTRIBUTES structure. A convenient macro can initialize such structure
before creating the actual object. Here is an example assuming a device object:

WDF_OBJECT_ATTRIBUTES devAttr;

WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&devAttr, MyDeviceContext);

status = WdfDeviceCreate(&DeviceInit, &devAttr, &device);

if(NT_SUCCESS(status)) {

MyDeviceContext* context = DeviceGetContext(device);

// use context

}

The Booster KMDF Driver

To demonstrate writing a KMDF driver, while bringing the previous sections into practical use, and
showing other parts of KMDF such as request processing, we’ll build a Booster driver (and client), similar
to the one from chapter 4, but based on KMDF instead of WDM. While working on the driver, we’ll
compare and contrast the KMDF way versus WDM.

To begin, we’ll create a new project named Booster of type Kernel Mode Driver, Empty (KMDF), contrary
to the WDM Empty Driver we’ve used until now. Note that there are other templates for KMDF, such as
Kernel Mode Driver (KMDF), which creates a non-empty project. Since we want to do everything from
scratch, we’ll use the “empty” template.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 531

The project created is not truly empty - it has an INF file present. In the WDM case, we used to delete
it. This time we’ll keep it, as it’s required to get some of the niceties, such as getting our device listed in
Device Manager. Technically, we could have done that with WDM as well.

We’ll examine the INF file later. For now, let’s proceed with the main parts of the driver’s code.

Driver Initialization

We’ll add a standard C++ file to the project named Booster.cpp, and write the standard DriverEntry
prototype. The first thing to do in a KMDF driver is “transform” it to such from WDM. This is done by
creating the root KMDF driver object, wrapping the WDM-provided DRIVER_OBJECT:

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {

WDF_DRIVER_CONFIG config;

WDF_DRIVER_CONFIG_INIT(&config, BoosterDeviceAdd);

return WdfDriverCreate(DriverObject, RegistryPath,

WDF_NO_OBJECT_ATTRIBUTES, &config, WDF_NO_HANDLE);

}

WdfDriverCreate accepts the driver object and Registry path passed to DriverEntry along with the
“config” and “attributes” structures as dicussed in the creation “pattern” earlier in this chapter.

Compared to a WDM driver, DriverEntry seems lacking - two crucial pieces are missing: device creation
and symbolic link creation. Instead, WDF_DRIVER_CONFIG_INIT is used to initialize the “config” structure
with callback function named BoosterDeviceAdd. This callback is called every time a device of this driver
is “detected” in the system.

The Unload routine has been set up, as it’s being handled by KMDF automatically.

Since our driver is not handling any hardware device, true Plug & Play cannot detect it. Instead, the INF
file indicates (as we’ll see later when we take a closer look at it) that whenever the driver is loaded, it
should be treated as if its first (and only) device is “discovered”, and so the AddDevice callback must be
invoked (BoosterAddDevice in this case). This is where we’ll create the device object and symbolic link.

KMDF vs. WDM
Behind the scenes, the AddDevice callback is stored in the
DriverObject->DriverExtension->AddDevice member in the driver object.

The AddDevice callback is where all the magic happens. We need to do three things in that callback:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 532

• Create a device object
• Create a symbolic link
• Create at least one queue

Let’s see what each item entails. Fisrt, creating a device object:

NTSTATUS BoosterDeviceAdd(WDFDRIVER Driver, PWDFDEVICE_INIT DeviceInit) {

UNREFERENCED_PARAMETER(Driver);

WDFDEVICE device;

auto status = WdfDeviceCreate(&DeviceInit, WDF_NO_OBJECT_ATTRIBUTES,

&device);

if (!NT_SUCCESS(status))

return status;

The AddDevice callback receives the driver object handle and a helper structure, WDFDEVICE_INIT, which
is not publicly defined, but there are APIs to manage its contents. In our case, we don’t need fo to anything.
WdfDeviceCreate accepts a pointer to it, which means it can replace it with a new object. The returned
WDFDEVICE is a handle to the newly created device object.

What is missing compared toWDM?We used to pass a device name to IoCreateDevice, but no such name
is provided in the above call. The reason will become clear with the next initialization - the symbolic link.

With the drivers we’ve written so far (not including filters), we provided an device name and an explicit
symbolic link. In the hardware space (what KMDF was built for), that is unlikely to be a good idea. For
example, suppose we’re writing a driver for a printer device. What should the device name be? What
should the symbolic link name be? “Printer1”? “MyPrinter”?

Using arbitrary strings has several drawbacks:

• The chosen name may collide with an existing name.
• Generating multiple names is challenging if more than one device of that type is connected to the
system. We would have to manage “Printer1”, “Printer2”, etc. This is not easy, as “Printer1” might
be later disconneced, and then reconnected again. What should its symbolic name be then?

• These strings don’t mean anything to the system. How can a client application enumerate all (say)
printers in the system? What “makes” a printer device?

All these above issues are mostly applicable to hardware-based devices. Our Booster device is going to
be a singleton in the system (no other Booster devices can be connected), so perhaps the above concerns
are irrelevant. But we will treat our booster device similar to a hardware device in this sense, to show the
flexibility that we get if we adhere to that model.

What is that model? How can we solve the above issues? The I/O system provides the idea of Device
Interfaces. A device interface is identified with a GUID, but from a conceptual perspective it’s best to
think of these just like interfaces in object-oriened code.

An interface is an abstraction that defined some kind of expected behavior, where multiple implementa-
tions of that behavior are possible. The way to solve the above issues is to register the device as “imple-
menting” one (or more) interfaces. In a case of printers, and many other “standard” device, Microsoft has
already defined those deviie interfaces with well-known (and documented) GUIDs.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 533

A printer driver can say “register my device as a printer”. If a driver is for a multifunction device, like a
printer/scanner/fax set of devices which are part of the same hardware, then such a driver needs to register
itself as “implementing” three interfaces - printer, scanner and fax. Each such registration creates a unique,
repeatable, symbolic link, which is what we need.

With KMDF, the call to make (for each supported interface) is to WdfDeviceCreateDeviceInterface:

NTSTATUS WdfDeviceCreateDeviceInterface(

In WDFDEVICE Device,

In CONST GUID* InterfaceClassGUID,

_In_opt_ PCUNICODE_STRING ReferenceString);

The above API requires the device object, the GUID to register it with, and the result is provided by
ReferenceString, which is the resulted symbolic link. It is optional, since the driver has no use for it -
instead, it’s the client that needs the symbolic link. How can a client get the symbolic link? It will have
to use certain user-mode APIs to “locate” a device that implement the Booster “interface”. We’ll see those
later when we write a user-mode client.

Since our Booster device is unique, there is no predefined device interface we can use. Instead, we’ll
generate a GUID and consider that the Booster’s device interface. Think of it as “what does it mean to be
a booster device?”. We’ll add that GUID to the header file shared with user-mode clients, as it’s needed in
order to locate the device.

We’ll add a BoosterCommon header file to the project, which has the same pieces as the one from ear-
lier versions - the supported control code and the ThreadData structure. Additionally, it will have our
generated GUID:

#include <initguid.h>

#define BOOSTER_DEVICE 0x8001

#define IOCTL_BOOSTER_SET_PRIORITY \

CTL_CODE(BOOSTER_DEVICE, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

struct ThreadData {

ULONG ThreadId;

int Priority;

};

// {49BDF7E8-8AD1-4852-9FB6-833279A1545F}

DEFINE_GUID(GUID_Booster, 0x49bdf7e8, 0x8ad1, 0x4852, \

0x9f, 0xb6, 0x83, 0x32, 0x79, 0xa1, 0x54, 0x5f);

The GUID was generated with the Create GUID tool shown in figure 13-15.

Back to BoosterAddDevice - here is the call to WdfDeviceCreateDeviceInterface:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 534

status = WdfDeviceCreateDeviceInterface(device, &GUID_Booster, nullptr);

if (!NT_SUCCESS(status))

return status;

KMDF vs. WDM
WdfDeviceCreateDeviceInterface calls IoRegisterDeviceInterface behind the scenes.

The next step in the AddDevice callback is to create a request queue. A queue is an sbtraction provided by
KMDF for handling requests (IRPs). When a request comes in, such as IRP_MJ_CREATE, IRP_MJ_READ or
IRP_MJ_WRITE, KMDF takes control of the request. Internally, there are three “packages” used by KMDF
for request processing:

• I/O Package - handles “standard” requests like Create, Read and Device I/O Control
• P&P/Power package - handles IRP_MJ_PNP (Plug & Play) and IRP_MJ_POWER (Power Management)
requests

• WMI package - handlesWindows Management Instrumentation (WMI) requests

Figure 14-2 shows the way these packages are logically connected internally and to request queues.

Figure 14-2: Request handling

Since the booster device is not Plug & Play, and doesn’t support WMI, we only need to concern ourselves
with “standard” requests. At least one queue is required to handle such requests. Three possible queues
are provided:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 535

• Sequential queue - guarantees that only one request is handled at a time
• Parallel queue - any number of requests can be thrown at the driver at the same time
• Manual queue - the driver deciced when to pull the next request for processing

Since the booster driver holds no state, there is no particular limit to the number of requests that be handled
concurrently - a parallel queue is the way to go. If there was some state, we could use a sequential queue
that would make it easier to handle requests without manually adding synchronization, at the possible
expense of lower performance with such requests, since they would be handles in a classic First-In-First-
Out (FIFO) queue.

To create a queue, we need to initialize its configuration, which mostly means which requests should be
handled by that queue, and then call WdfIoQueueCreate:

WDF_IO_QUEUE_CONFIG config;

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&config, WdfIoQueueDispatchParallel);

config.EvtIoDeviceControl = BoosterDeviceControl;

WDFQUEUE queue;

status = WdfIoQueueCreate(device, &config, WDF_NO_OBJECT_ATTRIBUTES, &queue);

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE initializes a WDF_IO_QUEUE_CONFIG structure to be a par-
ralel queue (WdfIoQueueDispatchParallel enumeration), and set the queue to be the default. The default
queue is used for any request that does not have a specific handler; one default queue must exist, and if
there is just one queue, it must be the default.

The booster driver needs to handle IRP_MJ_DEVICE_CONTROL, which is why the EvtIoDeviceControl
event (callback) is set to point to the driver’s handler (BoosterDeviceControl). WDF_IO_QUEUE_CONFIG
looks like so:

typedef struct _WDF_IO_QUEUE_CONFIG {

ULONG Size;

WDF_IO_QUEUE_DISPATCH_TYPE DispatchType;

WDF_TRI_STATE PowerManaged;

BOOLEAN AllowZeroLengthRequests;

BOOLEAN DefaultQueue;

PFN_WDF_IO_QUEUE_IO_DEFAULT EvtIoDefault;

PFN_WDF_IO_QUEUE_IO_READ EvtIoRead;

PFN_WDF_IO_QUEUE_IO_WRITE EvtIoWrite;

PFN_WDF_IO_QUEUE_IO_DEVICE_CONTROL EvtIoDeviceControl;

PFN_WDF_IO_QUEUE_IO_INTERNAL_DEVICE_CONTROL EvtIoInternalDeviceControl;

PFN_WDF_IO_QUEUE_IO_STOP EvtIoStop;

PFN_WDF_IO_QUEUE_IO_RESUME EvtIoResume;

PFN_WDF_IO_QUEUE_IO_CANCELED_ON_QUEUE EvtIoCanceledOnQueue;

union {

struct {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 536

ULONG NumberOfPresentedRequests;

} Parallel;

} Settings;

WDFDRIVER Driver;

} WDF_IO_QUEUE_CONFIG, *PWDF_IO_QUEUE_CONFIG;

You can see the EvtIo* callbacks for various requests and notifications, including EvtIoDefault which
is a “catch all” handler for other requests not specified elsewhere.

You may be wondering about the IRP_MJ_CREATE and IRP_MJ_CLOSE handlers. These are handled auto-
matically by the framework (in addition to IRP_MJ_CLEANUP. Create completed the request successfully.

Customizing handlers for Create, Close, and Cleanup is possible with event callbacks that can
be applied on the DeviceInit structure using a WDFFILEOBJECT object. See the documentation
for WDF_FILEOBJECT_CONFIG_INIT and WdfDeviceInitSetFileObjectConfig.

Here is the full AddDevice callback for easy reference:

NTSTATUS BoosterDeviceAdd(WDFDRIVER Driver, PWDFDEVICE_INIT DeviceInit) {

UNREFERENCED_PARAMETER(Driver);

WDFDEVICE device;

auto status = WdfDeviceCreate(&DeviceInit, WDF_NO_OBJECT_ATTRIBUTES,

&device);

if (!NT_SUCCESS(status))

return status;

status = WdfDeviceCreateDeviceInterface(device, &GUID_Booster, nullptr);

if (!NT_SUCCESS(status))

return status;

WDF_IO_QUEUE_CONFIG config;

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&config, WdfIoQueueDispatchParallel);

config.EvtIoDeviceControl = BoosterDeviceControl;

WDFQUEUE queue;

status = WdfIoQueueCreate(device, &config, WDF_NO_OBJECT_ATTRIBUTES,

&queue);

return status;

}

Device I/O Control Handling

The booster’s driver main job is to handle the single I/O control code. The BoosterDeviceControl handler
that was set in WDF_IO_QUEUE_CONFIG must have the following prototype:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 537

VOID EVT_WDF_IO_QUEUE_IO_DEVICE_CONTROL(

In WDFQUEUE Queue,

In WDFREQUEST Request,

In size_t OutputBufferLength,

In size_t InputBufferLength,

In ULONG IoControlCode);

As you can see, the function already provides most of what we need in order to process the request. There
is no need to dig into the I/O stack location, as in WDM. The needed information is handed to us on silver
platter, so to speak.

We’ll start the implementation by examining the given control code:

VOID BoosterDeviceControl(WDFQUEUE Queue, WDFREQUEST Request,

size_t OutputBufferLength, size_t InputBufferLength, ULONG IoControlCode) {

UNREFERENCED_PARAMETER(InputBufferLength);

UNREFERENCED_PARAMETER(OutputBufferLength);

UNREFERENCED_PARAMETER(Queue);

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = 0;

switch (IoControlCode) {

case IOCTL_BOOSTER_SET_PRIORITY:

Youmay bewonderingwhy the code uses UNREFERENCED_PARAMETER on the input buffer length. Shouldn’t
we be checking that as part of processing? As it turns out, even that is not strictly necessary for our case.
Here are the next lines of code:

ThreadData* data;

status = WdfRequestRetrieveInputBuffer(Request, sizeof(ThreadData),

(PVOID*)&data, nullptr);

if (!NT_SUCCESS(status))

break;

WdfRequestRetrieveInputBuffer accepts the request object, the minimum size of the input buffer
(sizeof(ThreadData), the resulting pointer, and an optional variable to receive the actual input buffer
size. If the buffer is too small, WdfRequestRetrieveInputBuffer returns an appropriate status. All we
need to do is bail out if we get a failed status.

The next part of the handler is identical to the WDM case. This is what makes this driver unique:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 538

if (data->Priority < 1 || data->Priority > 31) {

status = STATUS_INVALID_PARAMETER;

break;

}

PKTHREAD thread;

status = PsLookupThreadByThreadId(UlongToHandle(data->ThreadId), &thread);

if (!NT_SUCCESS(status))

break;

KeSetPriorityThread(thread, data->Priority);

ObDereferenceObject(thread);

info = sizeof(ThreadData);

break;

All that’s left to do is complete the request, for which KMDF has a bunch of APIs with different completion
details, such as the Information and the priority boost. For Booster, the following is what is needed:

}

WdfRequestCompleteWithInformation(Request, status, info);

Here is the full device I/O control handler for easy reference:

VOID BoosterDeviceControl(WDFQUEUE Queue, WDFREQUEST Request,

size_t OutputBufferLength, size_t InputBufferLength, ULONG IoControlCode) {

UNREFERENCED_PARAMETER(InputBufferLength);

UNREFERENCED_PARAMETER(OutputBufferLength);

UNREFERENCED_PARAMETER(Queue);

auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = 0;

switch (IoControlCode) {

case IOCTL_BOOSTER_SET_PRIORITY:

ThreadData* data;

status = WdfRequestRetrieveInputBuffer(Request, sizeof(ThreadData),

(PVOID*)&data, nullptr);

if (!NT_SUCCESS(status))

break;

if (data->Priority < 1 || data->Priority > 31) {

status = STATUS_INVALID_PARAMETER;

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 539

}

PKTHREAD thread;

status = PsLookupThreadByThreadId(

UlongToHandle(data->ThreadId), &thread);

if (!NT_SUCCESS(status))

break;

KeSetPriorityThread(thread, data->Priority);

ObDereferenceObject(thread);

info = sizeof(ThreadData);

break;

}

WdfRequestCompleteWithInformation(Request, status, info);

}

That concludes the Booster’s driver’s code.

The INF File

We’ll use an INF file to install the driver. This provides additional flexibility, as we can add files and
Registry entries as part of installation without using any code. INF files are not restricted to KMDF, and
we could have used them with WDM as well. KMDF practically requires an INF file to be used, as some
details cannot be set in code and must be specified in the Registry.

The following is an introduction to INF files. It’s far from complete, but should give you a good sense of
how it works and how to customize certain parts.

INF files use the classic INI file syntax, where there are sections in square brackets, and underneath a
section there are directives in the form “name=value”. These entries are instructions to the installer that
parses the file, essentially telling it to do two types of operations: copy files to specific locations andmaking
changes to the Registry.

Although the INF file looks “flat” - just sections, with directives in each section, it in fact models a tree,
where a directive in one section may point to another section by name.

It seems more appropriate to use a naturally hierarchical format, such as XML or JSON. When INF was
invented, neither XML nor JSON existed. I would have expected Microsoft to adapt XML or JSON at
some point, but this hasn’t happened at the time of this writing, and unlikely to happen in the future.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 540

The Version Section

The Version section is mandatory in an INF file. The following is generated by the WDK project wizard
(for the empty KMDF project type) for the Booster project, also showing the provided comments (anything
after a semicolon is considered a comment until the end of the line):

[Version]

Signature="$WINDOWS NT$"

Class=System ; TODO: specify appropriate Class

ClassGuid={4d36e97d-e325-11ce-bfc1-08002be10318} ; TODO: specify appropriate Cl\

assGuid

Provider=%ManufacturerName%

CatalogFile=Booster.cat

DriverVer= ; TODO: set DriverVer in stampinf property pages

PnpLockdown=1

The Signature directive must be set to the magic string "$Windows NT$". The reason for this name is
historical, and not important for this discussion.

TheClass andClassGuid directives aremandatory and specify the class (type or group) to which this driver
belongs to. The generated INF contains an example class, System, which is a predefined class defined by
Microsoft long ago, with its associated GUID.

The “TODO” comments indicate that we should probably change that to an “appropriate” class. What is
appropriate here? If the devices the driver manages are one of the predefined types (such as printer, disk,
display, etc.), then that one should be used. These predefined device classes are listed in the WDK docs.
For the Booster driver, it’s more appropriate to generate our own Booster “category” (class), by generating
another GUID. For the current driver, we’ll stick with the default System class. We’ll generate our own
later in this chapter.

The Class is mostly useful for hardware-based drivers, as some functionality can be specified based on
the driver’s class, such as loading certain filters. The list of all classes and their properties can be found in
the Registry under HKLM\System\CurrentControlSet\Control\Class. Each class is uniquely identified by a
GUID; the string name is just a human-readable helper. Figure 14-3 shows the System class entry in the
Registry.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 541

Figure 14-3: The System device class in the Registry

Back to the Version section in the INF - the Provider directive is the name of the driver publisher. It
doesn’t mean much in practical terms, but might appear in some UI, so should be something meaningful.
The value set by the WDK template is %ManufacturerName%. Anything within percent symbols is treated
like a “macro” - to be replaced by the actual value specified in another section called Strings. Here is part
of this section (traditionally the last section in the file):

[Strings]

SPSVCINST_ASSOCSERVICE= 0x00000002

ManufacturerName="Pavel Yosifovich"

DiskName = "Booster Installation Disk"

Booster.DeviceDesc = "Booster Device"

Booster.SVCDESC = "Booster Service"

As you can see, I have replaced the ManufacturerNamewith my name, and removed the original “TODO”
set by the project template.

The Install Sections

Notice the comment “Install Section” in the INF. Following it are two sections like so:

[Manufacturer]

%ManufacturerName%=Standard,NT$ARCH$

[Standard.NT$ARCH$]

%Booster.DeviceDesc%=Booster_Device, Root\Booster ; TODO: edit hw-id

The Manufacturer section is mandatory, where the device installation sections must be listed. Typically
there is just one, but technically an INF can install drivers for multiple devices. The string “Standard”
forms a name for a section augmented with “NT$ARCH$” where “$ARCH$” is expanded to the platform
name, such as “AMD64”. This makes it easy to add sections that target specific architectures, if desired.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 542

The pointed-to section, “Standard.NT$ARCH$” has directives pointing to specific device installation in-
structions (just one in this case). The left part (“%Booster.DeviceDesc%”) is shown in case the Plug &
Play manager needs to show some User Interface with a description of the device, but otherwise is not
important. The value after the equals sign is comprised of at least two parts. The first is a section name
(“Booster_Device” in this case), where installation instructions continue. The second is the unique device
ID for this device. The format is generally Enumerator\ID, where Enumerator is a type of bus in the
hardware case (e.g. PCI), or a virtual bus, as it is in our case - the Root bus can be used to force a device
to load always, which is what we want since the Booster device is not a hardware one.

The “TODO” comment indicates this can be changed if desired. We’ll keep the default since it’s basically
what we need.

Device Installation

The base name “Booster_Device” is used in multiple sections, all working towards installing the driver
with the correct settings. Here are the relevant sections:

[Booster_Device.NT]

CopyFiles=Drivers_Dir

[Drivers_Dir]

Booster.sys

;-------------- Service installation

[Booster_Device.NT.Services]

AddService = Booster,%SPSVCINST_ASSOCSERVICE%, Booster_Service_Inst

; -------------- Booster driver install sections

[Booster_Service_Inst]

DisplayName = %Booster.SVCDESC%

ServiceType = 1 ; SERVICE_KERNEL_DRIVER

StartType = 3 ; SERVICE_DEMAND_START

ErrorControl = 1 ; SERVICE_ERROR_NORMAL

ServiceBinary = %12%\Booster.sys

Booster_Device.NT (applies for any architecture) has a CopyFiles directive, pointing to “Drivers_Dir” sec-
tion that lists the files to copy (Booster.sys only in this case).

The Booster_Device.NT.Services serves the same purpose as the CreateService API (or the sc.exe
tool we have been using). You can see the service information listed, including DisplayName, Service-
Type, StartType, and ErrorControl. ServiceBinary sets the ImagePath value in the Registry, pointing to
“%12%\Booster.sys”. This weird “%12%” value represents the %SystemRoot%\System32\Drivers directory.
Table 14-1 shows some common directory names encoded with a number enclosed by percent symbols.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 543

Table 14-1: Common number to directory mappings

Number Directory

01 The directory from which the INF file is being installed

10 The Windows directory (same as %SystemRoot%)

11 The System directory (%SystemRoot\System32)

12 The Drivers directory (%SystemRoot\System32\Drivers)

17 The INF directory (%SystemDrive%INF)

20 The Fonts directory

24 Root directory of the system disk (e.g. C:\)

-1 Absolute path

There are a few more sections starting with “Booster_Device”, listed under a comment that reads “CoIn-
staller Installation”. A co-installer is a generic name for any additional installation that may be required
besides the driver-specific files. In this case, it’s properly installing KMDF. These sections are boilerplate,
and there is no need to touch them.

The User-Mode Client

Let’s now turn our attention to the user-mode client before attempting to install the driver. Most of the user-
mode code should remain the same, since the client does not need to know how the driver is implemented.

There is one important change, however - the symbolic link name is not known in advance, and must be
found dynamically. Here is the full main function of a client application called boost that is very similar
to a client we’ve seen before:

int main(int argc, const char* argv[]) {

if (argc < 3) {

printf("Usage: boost <tid> <priority>\n");

return 0;

}

auto name = FindBoosterDevice();

if (name.empty()) {

printf("Unable to locate Booster device\n");

return 1;

}

HANDLE hDevice = CreateFile(name.c_str(), GENERIC_WRITE, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 544

printf("Error: %u\n", GetLastError());

return 1;

}

ThreadData data;

data.ThreadId = atoi(argv[1]);

data.Priority = atoi(argv[2]);

DWORD bytes;

if (DeviceIoControl(hDevice, IOCTL_BOOSTER_SET_PRIORITY,

&data, sizeof(data), nullptr, 0, &bytes, nullptr))

printf("Success!\n");

else

printf("Error: %u\n", GetLastError());

CloseHandle(hDevice);

return 0;

}

As you can see from the above code, the only change compared to a “classic” client is the way the symbolic
link is obtained, by calling a helper function, FindBoosterDevice. If such a device is found, its symbolic
link is returned as a std::wstring, which is just handed over to CreateFile like always. Learly, that
function is the mystery.

We’ll start by adding the required includes:

#include <Windows.h>

#include <string>

#include <stdio.h>

#include "..\Booster\BoosterCommon.h"

#include <SetupAPI.h>

All the above includes should be familiar, except <setupapi.h>. This is where we’ll find the API used to
search for devices based on some criteria. Next, we’ll need to add its import library, since it’s implemented
in a separate DLL that is not referenced by default:

#pragma comment(lib, "setupapi")

Now we can start implementing the FindBoosterDevice function. Remember that the driver has regis-
tered itself with the GUID_Booster device interface, which is also provided in the common header file. We
need to search for devices that “implement” that device interface:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 545

std::wstring FindBoosterDevice() {

HDEVINFO hDevInfo = SetupDiGetClassDevs(&GUID_Booster, nullptr, nullptr,

DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

if (!hDevInfo)

return L"";

The SetupDiGetClassDevs API opens a handle to a “device information set” based on the supplied
arguments. Here we specify GUID_Booster to hone in only on this GUID, and tell the API to search
for existing devices only (DIGCF_PRESENT, without which the search would be extended to devices that
are installed by not currently loaded), and the second flag (DIGCF_DEVICEINTERFACE) indicates the API
should interpret GUID_Booster as a device interfaces, rather than a device class (which we’ll see later).
Our device class is System, so looking for that would return too many results.

The next step is to enumerate the resulting list of devices (if any), where we expect to find one de-
vice or no device at all (if the Booster driver has not been loaded). The enumration is done with
SetupDiEnumDeviceInfo like so:

std::wstring result;

do {

SP_DEVINFO_DATA data{ sizeof(data) };

if (!SetupDiEnumDeviceInfo(hDevInfo, 0, &data))

break;

The zero indicates the first item in the device set. We could enumerate more by incrementing the index
until the call fails. Assuming a single Booster device is installed, zero is all we need. Once successful, we
can proceed to locate the symbolic link from the first (and only) device interface supported for the Booster
device:

SP_DEVICE_INTERFACE_DATA idata{ sizeof(idata) };

if (!SetupDiEnumDeviceInterfaces(hDevInfo, &data, &GUID_Booster, 0, &idata))

break;

This retrieves the first device interface. Now we need the symbolic link:

BYTE buffer[1024];

auto detail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)buffer;

detail->cbSize = sizeof(*detail);

if (SetupDiGetDeviceInterfaceDetail(hDevInfo, &idata, detail,

sizeof(buffer), nullptr, &data))

result = detail->DevicePath;

} while (false);

SetupDiDestroyDeviceInfoList(hDevInfo);

return result;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 546

SetupDiGetDeviceInterfaceDetail retrieves the symbolic link based on the information obtained thus
far, returned in the SP_DEVICE_INTERFACE_DETAIL_DATA member DevicePath.

Here is the full function for easy reference:

std::wstring FindBoosterDevice() {

HDEVINFO hDevInfo = SetupDiGetClassDevs(&GUID_Booster, nullptr, nullptr,

DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

if (!hDevInfo)

return L"";

std::wstring result;

do {

SP_DEVINFO_DATA data{ sizeof(data) };

if (!SetupDiEnumDeviceInfo(hDevInfo, 0, &data))

break;

SP_DEVICE_INTERFACE_DATA idata{ sizeof(idata) };

if (!SetupDiEnumDeviceInterfaces(hDevInfo, &data, &GUID_Booster,

0, &idata))

break;

BYTE buffer[1024];

auto detail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)buffer;

detail->cbSize = sizeof(*detail);

if (SetupDiGetDeviceInterfaceDetail(hDevInfo, &idata, detail,

sizeof(buffer), nullptr, &data))

result = detail->DevicePath;

} while (false);

SetupDiDestroyDeviceInfoList(hDevInfo);

return result;

}

That’s it. This is all we need to get the symbolic link dynamically, based on the device interface we’re after
(GUID_Booster).

Installing and Testing

We have the driver and a client application. Installing the driver cannot be done with a simple sc.exe create
as we did in the past. We have to tell some installer to parse the INF file and perform everything that is
required.

First, we have to copy the files generated by the build process. These include Booster.inf, Booster.sys, and
Booster.cat. The latter is a catalog file, containing signature information for the driver package. The INF
file, by the way, has all its “$ARCH$” “macros” expanded.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 547

Once these files are copied to some directory on the target system, we need to use a tool called devcon.exe,
provided with the Windows SDK, to actually perform the installation. You can find it in a directory
like c:\Program Files (x86)\Windows Kits\10\Tools\10.0.25300.0\x64. Open an elevated command window,
navigate to above path and run the following:

devcon.exe install c:\Demo\Booster.inf root\booster

The above command assumes that the driver files were copied to c:\Demo. The last argument must be the
hardware ID specific earlier in the INF file. The reason it’s required is that there could be multiple device
IDs. I would have expected DevCon to select the whatever is in the INF file if there is just one. Currently,
it’s not doing that. When installing, you’ll get the following dialog popping up (figure 14-4).

Figure 14-4: Warning installation dialog

The dialog color is based on whether the driver about to be installed is signed or not. In our case, it’s
unsigned (the system is in test-signing mode), so the color is bright red as a warning. Click the “Install this
driver software anyway” option to proceed.

If you try to right-click the INF file and select Install, it won’t work. This only works with a
certain name for the install section (DefaultInstall), which is not the name given by the KMDF
project template.

Once the driver is installed, you can openDeviceManager and expand the SystemDevices node - remember
the driver was listed in the system device class. The booster name should appear (figure 14-5).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 548

Figure 14-5: Booster device in Device Manager

Right-clicking the Booster node and selecting properties, and navigating to the Details tab, shows various
properties of the device. Select Hardware IDs from the drop-down combobox and you’ll see the familiar
root\booster name (figure 14-6). hid

e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 549

Figure 14-6: Booster’s hardware ID

You can browse to the System32\Drivers directory where you’ll find Booster.sys. You can also look in the
Registry at the Booster key under the standard Services key.

What about the device name and symbolic link? Let’s take a look using a local kernel debugger.

kd> !drvobj booster f

Driver object (ffffd287330f5550) is for:

\Driver\Booster

Driver Extension List: (id , addr)

(fffff8001f2922a0 ffffd287472f76b0)

Device Object list:

ffffd28733edede0

DriverEntry: fffff8003f6615c0 Booster

DriverStartIo: 00000000

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 550

DriverUnload: fffff8003f661760 Booster

AddDevice: fffff8001f292050 Wdf01000!FxDriver::AddDevice

Dispatch routines:

[00] IRP_MJ_CREATE fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[01] IRP_MJ_CREATE_NAMED_PIPE fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[02] IRP_MJ_CLOSE fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[03] IRP_MJ_READ fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[04] IRP_MJ_WRITE fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[05] IRP_MJ_QUERY_INFORMATION fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[06] IRP_MJ_SET_INFORMATION fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

...

[16] IRP_MJ_POWER fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[17] IRP_MJ_SYSTEM_CONTROL fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[18] IRP_MJ_DEVICE_CHANGE fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[19] IRP_MJ_QUERY_QUOTA fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[1a] IRP_MJ_SET_QUOTA fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

[1b] IRP_MJ_PNP fffff8001f257ac0 Wdf01000!FxDevice::DispatchWithL\

ock

Device Object stacks:

!devstack ffffd28733edede0 :

!DevObj !DrvObj !DevExt ObjectName

> ffffd28733edede0 \Driver\Booster ffffd28745ec8fb0

ffffd28743ef5b10 \Driver\PnpManager ffffd28743ef5c60 0000010a

!DevNode ffffd2872e9d3050 :

DeviceInst is "ROOT\SYSTEM\0001"

ServiceName is "Booster"

Processed 1 device objects.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 551

You may need to enter .reload to force loading of KMDF symbols so you would see proper symbols. A
few things to notice here:

• All the dispatch routines have been “hijacked” by KMDF.
• There is one device object, part of a device node where two devices exist - our Booster device and a
device created by the Plug & Play manager (part of the virtual root bus).

• The device name is 0000010a, which you can guess is generated by a running index. We expect some
symbolic link to be pointing to it.

How do we see the symbolic link without running the client? We could examine the symbolic links
directory usingWinObj and look for a target of \Device\0000010a (figure 14-7).

Figure 14-7: Booster’s symbolic link inWinObj

Note the name of the symbolic link: “ROOT#SYSTEM#0001#”. It consists of a “local” name (the same one
shown as DeviceInst in the debugger output above where backslashes are replaced by pound signs), and
then the GUID_Booster GUID in string form.

We can run the user-mode client normally:

boost.exe 7752 20

Examine other Booster device properties using Device Manager

Run DevCon again and install another device. What does that look like in Device Manager and
WinObj?

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 552

If you’re curious as to how the driver is installed via the INF file, you can look at the DevCon source
code, which is provided as part of the WDK samples on Github. A couple of other tools you might find
useful include Device Exploer, an enhanced version of Device Manager (you can find it in one of my
Github repos), as well as InstDrv tool - a command line tool that can install a driver based on an INF file
without the need to specify a hardware ID - it just installs the first one. The source code is part of the
Device Explorer’s solution.

Registering a Device Class

Our Booster device was registered with the System device class, which is inappropriate. It should have its
own device class, since it’s a “special” device - it is unlike any other device type in the system.

To that end, we can register a new device class by adding a couple of sections in the INF file and setting
the information for the new device class. Here are the sections to add:

; define new device class

[ClassInstall32]

AddReg=DevClass_AddReg

[DevClass_AddReg]

HKR,,,,MyDeviceClassName ; change as needed

HKR,,SilentInstall,,1

And of course the Version section has to use the new class and newly generated class GUID.

I have created another project in the same solution named Booster2 that has the same code, but with the
needed changes in the INF so that we get a new device class.

Here are the changes in the INF:

[Version]

Signature="$WINDOWS NT$"

Class=BoosterDevice

ClassGuid={AE4151AF-8C29-41C3-BB16-0B3115733333}

Provider=%ManufacturerName%

CatalogFile=Booster2.cat

DriverVer= ; TODO: set DriverVer in stampinf property pages

PnpLockdown=1

; define new device class

[ClassInstall32]

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 553

AddReg=DevClass_AddReg

[DevClass_AddReg]

HKR,,,,BoosterDevice

HKR,,SilentInstall,,1

The GUID in ClassGuid was generated with the Create GUID tool. Once the generated driver is installed,
the new device in Device Manager is shown similar to figure 14-8.

Figure 14-8: A Booster device with its own device class

Does the client need to change? Not necessarily. It’s still value to look for the GUID_Booster device
interfaces. However, it also makes sense to add the device class GUID to the BoosterCommon.h header
file. Then the search function has the flexibility to search by device class instead of (or in addition to) the
device interface.

1. Add the device class GUID to BoosterCommon.h.
2. Change the search function to look for the device class instead of the device interface.
3. Implement the Zero driver from earlier modules using KMDF.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 14: Introduction to KMDF 554

Summary

KMDF provides a higher level of abstraction over WDM. Its real power is clearly visible when writing
drivers for hardware-based devices, but as we have seen in this chapter it has some niceties we can take
advantage of to simplify coding.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics
In this last chapter of the book, we’ll take a look at various topics that didn’t fit well in previous chapters.

In this chapter:

• Driver Signing
• Driver Verifier
• Filter Drivers
• Device Monitor
• Driver Hooking
• Kernel Libraries

Driver Signing

Kernel drivers are the only official mechanism to get code into theWindows kernel. As such, kernel drivers
can cause a system crash or another form of system instability. The Windows kernel does not have any
distinction between “more important” drivers and “less important” drivers. Microsoft naturally would
like Windows to be stable, with no system crashes or instabilities. Starting from Windows Vista, on 64
bit systems, Microsoft requires drivers to be signed using a proper certificate acquired from a certificate
authority (CA). Without signing, the driver will not load.

Does a signed driver guarantee quality? Does it guarantee the systemwill not crash? No. It only guarantees
the driver files have not changed since leaving the publisher of the driver and that the publisher itself is
authentic. It’s not a silver bullet against driver bugs, but it does give some sense of confidence in the driver.

For a hardware-based driver, Microsoft requires these to pass theWindows Hardware Quality Lab (WHQL)
tests, containing rigorous tests for stability and driver functionality. If the driver passes these tests, it
receives a Microsoft stamp of quality, which the driver publisher can advertise as a sign of quality and
trust. Another consequence of passing WHQL is making the driver available through Windows Update,
which is important for some publishers.

Starting with Windows 10 version 1607 (“Anniversary update”), for systems that were freshly installed
(not upgraded from an earlier version) with secure boot on - Microsoft requires drivers to be signed by
Microsoft as well as by the publisher. This is true for all types of drivers, not just related to hardware.
Microsoft provides a web portal where drivers can be uploaded (must already be signed by the publisher),
tested in some ways by Microsoft and finally signed by Microsoft and returned back to the publisher. It
may take some time for Microsoft to return the signed driver the first time the driver is uploaded, but later
iterations are fairly fast (several hours).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 556

The driver that needs to be uploaded includes the binaries only. The source code is not required.

Figure 15-1 shows an example driver image file from Nvidia that is signed by both Nvidia and Microsoft
on a Windows 10 19H1 system.

Figure 15-1: Driver signed by vendor and by Microsoft

The first step in driver signing is obtaining a proper certificate from a certificate authority (such as Verisign,
Globalsign, Digicert, Symantec, and others) for at least kernel code signing. The CA will validate the
identity of the requesting company, and if all is well, will issue a certificate. The downloaded certificate
can be installed in the machine’s certificate store. Since the certificate must be kept secret and not leak,
it is typically installed on a dedicated build machine and the driver signing process is done as part of the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 557

build process.

The actual signing operation is done with the SignTool.exe tool, part of the Windows SDK. You can use
Visual Studio to sign a driver if the certificate is installed in a certificate store on the local machine. Figure
15-2 shows the signing properties in Visual Studio.

Figure 15-2: Driver signing page in Visual Studio

Visual Studio provides two types of signing: Test sign and production sign. With test signing, a test
certificate (a locally-generated certificate that is not trusted globally) is typically used. This allows testing
the driver on systems configuredwith test signing enabled, as we’ve done throughout this book. Production
signing is about using a real certificate to sign the driver for production use.

Test certificates can be generated at will using Visual Studio when selecting a certificate, as shown in
Figure 15-3.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 558

Figure 15-3: Selecting a certificate type in Visual Studio

Figure 15-4 shows an example of production signing a release build of a driver in Visual Studio. Note that
the digest algorithm should be SHA256 rather than the older, less secure, SHA1.

Figure 15-4: Production signing a driver in Visual Studio

Dealing with the various procedures for registering and signing drivers is beyond the scope of this book.
Things got more complicated in recent years due to new Microsoft rules and procedures. Consult the
official documentation available here⁴.

⁴https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-
later-

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-

Chapter 15: Miscellaneous Topics 559

Driver Verifier

Driver Verifier is a built-in tool that existed inWindows sinceWindows 2000. Its purpose is to help identify
driver bugs and bad coding practices. For example, suppose your driver causes a BSOD in some way, but
the driver’s code is not on any call stacks in the crash dump file. This typically means that your driver
did something which was not fatal at the time, such as writing beyond one of its allocated buffers, where
that memory was unfortunately allocated to another driver or the kernel. At that point, there is no crash.
However, sometime later that driver or the kernel will use that overflowed data and most likely cause a
system crash. There is no easy way to associate the crash with the offending driver. The driver verifier
offers an option to allocatememory for the driver in its own “special” pool, where pages at higher and lower
addresses are inaccessible, and so will cause an immediate crash upon a buffer overflow or underflow,
making it easy to identify the problematic driver.

Driver verifier has a GUI and a command line interface, and can work with any driver - it does not require
any source code. The easiest way to start with the verifier is to open it by typing verifier in the Run dialog
or searching for verifier when clicking the Start button. Either way, the verifier presents its initial user
interface shown in Figure 15-5.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 560

Figure 15-5: Driver Verifier initial window

There are two things that need to be selected: the type of checks to do by the verifier, and the drivers that
should be checked. The first page of the wizard is about the checks themselves. The options available on
this page are as follows:

• Create standard settings selects a predefined set of checks to be performed. We’ll see the complete
list of available checks in the second page, each with a flag of Standard or Additional. All those
marked Standard are selected by this option automatically.

• Create custom settings allows fine grained selection of checks by listing all the available checks,
shown in Figure 15-6.

• Delete existing settings deletes all existing verifier settings.
• Display existing settings shows the current configured checks and the drivers for which this checks
apply.

• Display information about the currently verified drivers shows the collected information for the
drivers running under the verifier in an earlier session.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 561

Figure 15-6: Driver Verifier selection of settings

Selecting Create custom settings shows the available list of verifier settings, a list that has grown consid-
erably since the early days of Driver Verifier. The flag Standard flag indicates this setting is part of the
Standard settings that can be selected in the first page of the wizard. Once the settings have been selected,
the Verifier shows the next step for selecting the drivers to execute with these settings, shown in Figure
15-7.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 562

Figure 15-7: Driver Verifier initial driver selection

Here are the possible options:

• Automatically select unsigned drivers is mostly relevant for 32 bit systems as 64 bit systems must
have signed drivers (unless in test signing mode). Clicking Next will list such drivers. Most systems
would not have any.

• Automatically select drivers built for older versions of Windows is a legacy setting for NT 4 hardware
based drivers. Mostly uninteresting for modern systems.

• Automatically select all drivers installed on the computer is a catch all option that selects all drivers.
This theoretically could be useful if you are presented with a system that crashes but no one has any
clue as to offending driver. However, this setting is not recommended, as it slows down the machine
(verifier has its costs), because verifier intercepts various operations (based on the previous settings)
and typically causes more memory to be used. So it’s better in such a scenario to select the first (say)
15 drivers, see if the verifier catches the bad driver, and if not select the next 15 drivers, and so on.

• Select driver names from a list* is the best option to use, where Verifier presents a list of drivers
currently executing on the system, as shown in Figure 15-8. If the driver in question is not currently

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 563

running, clicking Add currently not loaded driver(s) to the list… allows navigating to the relevant
SYS file(s).

Figure 15-8: Driver Verifier specific driver selection

Finally, clicking Finish changes makes the settings permanent until revoked, and the system typically
needs to be restarted so that verifier can initialize itself and hook drivers, especially if these are currently
executing.

Example Driver Verifier Sessions

Let’s start with a simple example involving theNotMyFault tool from Sysinternals. As discussed in chapter
6, this tool can be used to crash the system in various ways. Figure 15-9 showsNotMyFault main UI. Some
of the options to crash the system will do so immediately, with the driver MyFault.sys appearing on the
call stack of the crashing thread. This is an easy crash to diagnose. However, the option Buffer overflow
may or may not crash the system immediately. If the system crashes somewhat later, than it’s unlikely to
find MyFault.sys on the call stack.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 564

Make sure you run NotMyFault64.exe on a 64-bit system.

Figure 15-9: NotMyFault main UI

Let’s try this (in a virtual machine). It may take several clicks on Crash to actually crash the system.
Figure 15-10 shows the result on a Windows 7 VM after some clicks on Crash and several seconds passing
by. Note the BSOD code (BAD_POOL_HEADER). A good guess would be the buffer overflow wrote over some
of the metadata of a pool allocation.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 565

Figure 15-10: NotMyFault causing BSOD on Windows 7 with Buffer overflow

Loading the resulting dump file and looking at the call stack shows this:

1: kd> k

Child-SP RetAddr Call Site

00 fffff880`054be828 fffff800`029e4263 nt!KeBugCheckEx

01 fffff880`054be830 fffff800`02bd969f nt!ExFreePoolWithTag+0x1023

02 fffff880`054be920 fffff800`02b0669b nt!ObpAllocateObject+0x12f

03 fffff880`054be990 fffff800`02c2f012 nt!ObCreateObject+0xdb

04 fffff880`054bea00 fffff800`02b1a7b2 nt!PspAllocateThread+0x1b2

05 fffff880`054bec20 fffff800`02b20d95 nt!PspCreateThread+0x1d2

06 fffff880`054beea0 fffff800`028aaad3 nt!NtCreateThreadEx+0x25d

07 fffff880`054bf5f0 fffff800`028a02b0 nt!KiSystemServiceCopyEnd+0x13

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 566

08 fffff880`054bf7f8 fffff800`02b29a60 nt!KiServiceLinkage

09 fffff880`054bf800 fffff800`0286ac1a nt!RtlpCreateUserThreadEx+0x138

0a fffff880`054bf920 fffff800`0285c1c0 nt!ExpWorkerFactoryCreateThread+0x92

0b fffff880`054bf9e0 fffff800`02857dd0 nt!ExpWorkerFactoryCheckCreate+0x180

0c fffff880`054bfa60 fffff800`028aaad3 nt!NtReleaseWorkerFactoryWorker+0x1a0

0d fffff880`054bfae0 00000000`76e1ac3a nt!KiSystemServiceCopyEnd+0x13

Clearly, MyFault.sys is nowhere to be found. analyze -v, by the way is no wiser and concludes that the
module nt is the culprit.

Now let’s try the same experiment with Driver Verifier. Choose standard settings and navigate to the
System32\Drivers to locateMyFault.sys (if it’s not currently running). Restart the system, run NotMyFault
again, select Buffer overflow and click Crash. You will notice that the system crashes immediately, with a
BSOD similar to the one shown in Figure 15-11.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 567

Figure 15-11: NotMyFault BSOD on Windows 7 with Buffer overflow and Verifier active

The BSOD itself is immediately telling. The dump file confirms it with the following call stack:

0: kd> k

Child-SP RetAddr Call Site

00 fffff880`0651c378 fffff800`029ba462 nt!KeBugCheckEx

01 fffff880`0651c380 fffff800`028ecb96 nt!MmAccessFault+0x2322

02 fffff880`0651c4d0 fffff880`045f1c07 nt!KiPageFault+0x356

03 fffff880`0651c660 fffff880`045f1f88 myfault+0x1c07

04 fffff880`0651c7b0 fffff800`02d63d56 myfault+0x1f88

05 fffff880`0651c7f0 fffff800`02b43c7a nt!IovCallDriver+0x566

06 fffff880`0651c850 fffff800`02d06eb1 nt!IopSynchronousServiceTail+0xfa

07 fffff880`0651c8c0 fffff800`02b98296 nt!IopXxxControlFile+0xc51

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 568

08 fffff880`0651ca00 fffff800`028eead3 nt!NtDeviceIoControlFile+0x56

09 fffff880`0651ca70 00000000`777e98fa nt!KiSystemServiceCopyEnd+0x13

We have no symbols for MyFault.sys, but clearly it’s the culprit.

Filter Drivers

The Windows driver model is device-centric as we’ve seen already in chapter 7. Devices can be layered
on top of each other, resulting in the highest layer device getting first crack at an incoming IRP. This same
model is used for file system drivers, which we leveraged in chapter 12 with the help of the Filter Manager,
which is specialized for file system filters. However, the filtering model is generic and can be utilized for
other types of devices. In this section we’ll take a closer look at the general model of device filtering, which
we’ll be able to apply to a broad range of devices, some of which are related to hardware devices while
others are not.

The kernel API provides several functions that allow one device to be layered on top of another device. The
simplest is probably IoAttachDevice which accepts a device object to attach and a target named device
object to attach to. Here is its prototype:

NTSTATUS IoAttachDevice (

PDEVICE_OBJECT SourceDevice,

In PUNICODE_STRING TargetDevice,

Out PDEVICE_OBJECT *AttachedDevice);

The output of the function (besides the status) is another device object to which the SourceDevice was
actually attached to. This is required since attaching to a named device which is not at the top of its device
stack succeeds, but the source device is actually attached on top of the topmost device, which may be
another filter. It’s important, therefore, to get the real device that the source device attached itself to, as
that device should be the target of requests if the driver wishes to propagate them down the device stack.
This is illustrated in Figure 15-12.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 569

Figure 15-12: Attaching to a named device

Unfortunately, attaching to a device object requires some more work. As discussed in chapter 7, a device
can ask the I/Omanager to help with accessing a user’s buffer with Buffered I/O or Direct I/O (for IRP_MJ_-
READ and IRP_MJ_WRITE requests) by setting the appropriate flags in the Flags member of the DEVICE_-
OBJECT. In a layering scenario there are multiple devices, so which device is the one that determines how
the I/O manager should help with I/O buffers? It turns out it’s always the topmost device. This means that
our new filter device should copy the value of DO_BUFFERED_IO and DO_DIRECT_IO flags from the device
it actually layered on top of. The default for a device just created with IoCreateDevice has neither of
these flags set, so if the new device fails to copy these bits, it most likely will cause the target device to
malfunction and even crash, as it would not expect its selected buffering method not being respected.

There are a few other settings that need to be copied from the attached device to make sure the new filter
looks the same to the I/O system. We’ll see these settings later when we build a complete example of a
filter.

What is this device name that IoAttachDevice requires? This is a named device object within the Object
Manager’s namespace, viewable with the WinObj tools we’ve used before. Most of the named device
objects are located in the \Device\ directory, but some are located elsewhere. For example, if we were to
attach a filter device object to Process Explorer’s device object, the name would be \Device\ProcExp152
(the name is case insensitive).

Other functions for attaching to another device object include IoAttachDeviceToDeviceStack and
IoAttachDeviceToDeviceStackSafe, both accepting another device object to attach to rather than a
name of a device. These functions are mostly useful when building filters registered for hardware-based
device drivers, where the target device object is provided as part of device node building (partially
described in chapter 7 as well). Both return the actual layered device object, just as IoAttachDevice does.
The Safe function returns a proper NTSTATUS, while the former returns NULL on failure. Other than that,
these functions are identical.

Generally, kernel code can obtain a pointer to a named device object with IoGetDeviceObjectPointer
that returns a device object and a file object open for that device based on a device name. Here is the

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 570

prototype:

NTSTATUS IoGetDeviceObjectPointer (

In PUNICODE_STRING ObjectName,

In ACCESS_MASK DesiredAccess,

Out PFILE_OBJECT *FileObject,

Out PDEVICE_OBJECT *DeviceObject);

The desired access is typically FILE_READ_DATA or any other that is valid for file objects. The returned file
object’s reference is incremented, so the driver needs to be careful to decrement that reference eventually
(ObDereferenceObject) so the file object does not leak. The returned device object can be used as an
argument to IoAttachDeviceToDeviceStack(Safe).

Filter Driver Implementation

A filter driver needs to attach a device object over a target device for which filtering is required. We’ll
discuss later when attachment should occur, but for now let’s assume the call to one of the “attach”
functions is made at some point. Since the new device object will now become the topmost device in the
device stack, any request the driver does not support will bounce back to the client with an “unsupported
operation” error. This means that the filter’s DriverEntry must register for all major function codes if it
wants to make sure the underlying device object continues to function normally. Here is one way to set
this up:

for (int i = 0; i < ARRAYSIZE(DriverObject->MajorFunction); i++)

DriverObject->MajorFunction[i] = HandleFilterFunction;

The above code snippet sets all major function codes pointing to the same function. The HandleFilterFunction
function must, at the very least, call the lower layered driver using the device object obtained from one
of the “attach” functions. Of course, being a filter, the driver will want to do additional work or different
work for requests it’s interested in, but all the requests it does not care about must be forwarded to the
lower layer device, or else that device will not function properly.

This “forward and forget” operation is very common in filters. Let’s see how to implement this functional-
ity. The actual call that transfers an IRP to another device is IoCallDriver. However, before calling it the
current driver must prepare the next I/O stack location for the lower driver’s use. Remember that initially,
the I/O manager only initializes the first I/O stack location. it’s up to every layer to initialize the next I/O
stack location before using IoCallDriver to pass the IRP down the device stack.

The driver can call IoGetNextIrpStackLocation to get a pointer to the next layer’s IO_STACK_-
LOCATION and go ahead and initialize it. In most cases, however, the driver just wants to present
to the lower layer the same information it received itself. One function that can help with that is
IoCopyCurrentIrpStackLocationToNext, which is pretty self explanatory. This function, however,
does not just blindly copy the I/O stack location like so:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 571

auto current = IoGetCurrentIrpStackLocation(Irp);

auto next = IoCopyCurrentIrpStackLocationToNext(Irp);

*next = *current;

Why? The reason is subtle, and has to do with the completion routine. Recall from chapter 7 that a
driver can set up a completion routine to be notified once an IRP is completed by a lower layer driver
(IoSetCompletionRoutine/Ex). The completion pointer (and a driver-defined context argument) are
stored in the next I/O stack location, and that’s why a blind copy would duplicate the higher-level comple-
tion routine (if any), which is notwhatwewant. This is exactlywhat IoCopyCurrentIrpStackLocationToNext
avoids.

But there is actually a better way if the driver does not need a completion routine and just wants to use
“forward and forget”, without paying the price of copying the I/O stack location data. This is accomplished
by skipping the I/O stack location in such a way so that the next lower layer driver sees the same I/O stack
location as this one:

IoSkipCurrentIrpStackLocation(Irp);

status = IoCallDriver(LowerDeviceObject, Irp);

IoSkipCurrentIrpStackLocation simply decrements the internal IRP’s I/O stack location’s pointer, and
IoCallDriver increments it, essentially making the lower driver see the same I/O stack location as this
layer, without any copying going on; this is the preferred way of propagating the IRP down if the driver
does not wish to make changes to the request and it does not require a completion routine.

Technically, the I/O stack location is incremented by IoSkipCurrentIrpStackLocation and
decremented back by IoCallDriver, as the I/O stack locations are used from the bottom of
memory going up.

Attaching Filters

When does a driver call one of the attach functions? The ideal time is when the underlying device (the
attach target) is being created; that is, the device node is in the process of being built. This is common in
filters for hardware-based device drivers, where filters can be registered in the named values UpperFilters
and LowerFilters we saw in chapter 7. For these filters, the proper location for actually creating the new
device object and attaching it to an existing device stack is in a callback set with the AddDevice member
accessible from the driver object like so:

DriverObject->DriverExtension->AddDevice = FilterAddDevice;

We’ve briefly discussed that in chapter 14 when looking at driver initialization with KMDF.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 572

This AddDevice callback is invoked when a new hardware device belonging to the driver has been identi-
fied by the Plug & Play system. This routine has the following prototype:

NTSTATUS AddDeviceRoutine (

In PDRIVER_OBJECT DriverObject,

In PDEVICE_OBJECT PhysicalDeviceObject);

The I/O system provides the driver with the device object at the bottom of the device stack (PhysicalDe-
viceObject or PDO) to be used in a call to IoAttachDeviceToDeviceStack(Safe). This PDO is one reason
why DriverEntry is not a suitable location to make an attach call - at this point the PDO is not yet
provided. Furthermore, a second device of the same type may be added into the system (such as a second
USB camera), in which case DriverEntry is not going to be called at all; only the AddDevice routine will.

Here is an example for implementing an AddDevice routine for a filter driver (error handling omitted):

struct DeviceExtension {

PDEVICE_OBJECT LowerDeviceObject;

};

NTSTATUS FilterAddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT PDO) {

PDEVICE_OBJECT DeviceObject;

auto status = IoCreateDevice(DriverObject, sizeof(DeviceExtension), nullptr,

FILE_DEVICE_UNKNOWN, 0, FALSE, &DeviceObject);

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

status = IoAttachDeviceToDeviceStackSafe(

DeviceObject, // device to attach

PDO, // target device

&ext->LowerDeviceObject); // actual device object

//

// copy some info from the attached device

//

DeviceObject->DeviceType = ext->LowerDeviceObject->DeviceType;

DeviceObject->Flags |= ext->LowerDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO);

//

// important for hardware-based devices

//

DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 573

DeviceObject->Flags |= DO_POWER_PAGABLE;

return status;

}

A few important points on the code above:

• The device object is created without a name. A name is not needed, because the target device is
named and is the real target for IRPs, so no need to provide our own name. The filter is going to be
invoked regardless.

• In the IoCreateDevice call we specify a non-zero size for the second argument, asking the I/O
manager to allocate an extra buffer (sizeof(DeviceExtension)) along with the actual DEVICE_-
OBJECT. Up until now we used global variables to manage state for a device because we had just
one. However, a filter driver may create multiple device objects and attach to multiple device stacks,
making it harder to correlate device objects with some state. The device extensionmechanismmakes
it easy to get to a device-specific state given the device object itself. In the above code we capture
the lower device object as our state, but this structure can be extended to include more information
as needed.

• We copy some information from the lower device object, so that our filter appears to the I/O
system as the target device itself. Specifically, we copy the device type and the buffering method
flags. Copying the buffering method flags is critical, as the buffering method is determined by the
uppermost device - our filter as it may turn out.

• Finally, we remove the DO_DEVICE_INITIALIZING flag (set by the I/O system initially) to indicate
to the Plug & Play manager that the device is ready for work. The DO_POWER_PAGABLE flag indicates
Power IRPs should arrive in IRQL < DISPATCH_LEVEL, and is in fact mandatory.

Given the above code, here is a “forward and forget” implementation that uses the lower device as described
in the previous section:

NTSTATUS FilterGenericDispatch(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

IoSkipCurrentIrpStackLocation(Irp);

return IoCallDriver(ext->LowerDeviceObject, Irp);

}

Attaching Filters at Arbitrary Time

The previous section looked at attaching a filter device in the AddDevice callback, called by the plug &
Play manager while the device node is being built. For non-hardware based drivers, we may or may not
have registry settings to use for filters. In the latter case, no AddDevice callback is ever invoked.

For these more general cases, the filter driver can attach filter devices theoretically at any time, by creating
a device object (IoCreateDevice) and then using one of the “attach” functions. This means the target
device already exists, it’s already working, and at some point it gets a filter. The driver must make sure

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 574

this slight “interruption” does not have any adverse effect on the target device. Most of the operations
shown in the previous sections are relevant here as well, such as copying some flags from the lower device.
However, some extra care must be taken to make sure the target device’s operations are not disrupted.

Using IoAttachDevice, the following code creates a device object and attaches it over another named
device object (error handling omitted):

//

// use hard-coded name for illustration purposes

//

UNICODE_STRING targetName = RTL_CONSTANT_STRING(L"\\Device\\SomeDeviceName");

PDEVICE_OBJECT DeviceObject;

auto status = IoCreateDevice(DriverObject, 0, nullptr,

FILE_DEVICE_UNKNOWN, 0, FALSE, &DeviceObject);

PDEVICE_OBJECT LowerDeviceObject;

status = IoAttachDevice(DeviceObject, &targetName, &LowerDeviceObject);

//

// copy information

//

DeviceObject->Flags |= LowerDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO);

DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

DeviceObject->Flags |= DO_POWER_PAGABLE;

DeviceObject->DeviceType = LowerDeviceObject->DeviceType;

Astute readers may notice that the above code has an inherent race condition. Can you spot it?

This is essentially the same code used in the AddDevice callback in the previous section. But in that code
there was no race condition. This is because the target device was not yet active - the device node was
being built, device by device, from the bottom to the top. The device was not yet in a position to receive
requests.

Contrast that with the above code - the target device is working and could be very busy, when suddenly
a filter appears. The I/O system makes sure there is no issue while performing the actual attach operation,
but once the call to IoAttachDevice returns (and in fact even before that), requests continue to come in.
Suppose that a read operation comes in just after IoAttachDevice returns but before the bufferingmethod
flags are set - the I/O manager will see the flags as zero (neither I/O) since it only looks at the topmost
device, which is now our filter! So if the target device uses Direct I/O (for example), the I/O manager will
not lock the user’s buffer, will not create an MDL, etc. This could lead to a system crash if the target driver
always assumes that Irp->MdlAddress (for example) is non-NULL.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 575

The window of opportunity for failure is very small, but it’s better to play it safe.

How can we solve this race condition? We must prepare our new device object fully before actually
attaching. We can do that by calling IoGetDeviceObjectPointer to get the target device object,
copy the required information to our own device (at this time still not attached), and only then call
IoAttachDeviceToDeviceStack(Safe). We’ll see a complete example later in this chapter.

Write the appropriate code to use IoGetDeviceObjectPointer as described above.

Filter Cleanup

Once a filter is attached, it must be detached at some point. Calling IoDetachDevicewith the lower device
object pointer performs this operation. Notice the lower device object is the argument, not the filter’s own
device object. Finally, IoDeleteDevice for the filter’s device object should be called, just as we did in all
our drivers so far.

The question is when should this cleanup code be called? if the driver is unloaded explicitly, then the
normal unload routine should perform these cleanup operations. However, some complication arises in
filters for hardware-based drivers. These drivers may need to unload because of a Plug & Play event,
such as a user yanking out a device out of the system. A hardware based driver receives an IRP_MJ_PNP
request with a minor IRP IRP_MN_REMOVE_DEVICE indicating the hardware itself is gone, so the entire
device node is not needed and it will be torn down. It’s the responsibility of the driver to handle this PnP
request properly, detach from the device node and delete the device.

This means that for hardware-based filters, a simple “forward and forget” for IRP_MJ_PNP will not suffice.
Special treatment is needed for IRP_MN_REMOVE_DEVICE. Here is some example code:

NTSTATUS FilterDispatchPnp(PDEVICE_OBJECT fido, PIRP Irp) {

auto ext = (DeviceExtension*)fido->DeviceExtension;

auto stack = IoGetCurrentIrpStackLocation(Irp);

UCHAR minor = stack->MinorFunction;

IoSkipCurrentIrpStackLocation(Irp);

auto status = IoCallDriver(ext->LowerDeviceObject, Irp);

if (minor == IRP_MN_REMOVE_DEVICE) {

IoDetachDevice(LowerDeviceObject);

IoDeleteDevice(fido);

}

return status;

}

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 576

More on Hardware-Based Filter Drivers

Filters for hardware-based driver have some further complications. The FilterDispatchPnp function
shown in the previous section has a race condition in it. The problem is that while some IRP is being
handled, a remove device request might come in (handled on another CPU, for instance). This will cause
IoDeleteDevice calls in drivers that are part of the device node while a filter is preparing to send the
other request down the device stack. A more detailed explanation of this race condition is beyond the
scope of this book, but regardless, we need an air-tight solution.

The solution is an object provided by the I/O system called a remove lock, represented by the IO_REMOVE_-
LOCK structure. Essentially, this structure manages a reference count of the number of outstanding IRPs
currently being handled and an event that is signaled when the I/O count is zero and a remove operation
is in progress. Using an IO_REMOVE_LOCK can be summarized as follows:

1. The driver allocates the structure as part of a device extension or a global variable and initializes it
once with IoInitializeRemoveLock.

2. For every IRP, the driver acquires the remove lock with IoAcquireRemoveLock before passing it
down to a lower device. if the call fails (STATUS_DELETE_PENDING) it means a remove operation is
in progress and the driver should return immediately.

3. Once a lower driver is done with the IRP, release the remove lock (IoReleaseRemoveLock).
4. When handling IRP_MN_REMOVE_DEVICE call IoReleaseRemoveLockAndWait before detaching and

deleting the device. The call will succeed once all other IRPs are not longer being processed.

With these steps inmind, the generic dispatch passing requests downmust be changed as follows (assuming
the remove lock was already initialized):

struct DeviceExtension {

IO_REMOVE_LOCK RemoveLock;

PDEVICE_OBJECT LowerDeviceObject;

};

NTSTATUS FilterGenericDispatch(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

//

// second argument is unused in release builds of Windows

//

auto status = IoAcquireRemoveLock(&ext->RemoveLock, Irp);

if(!NT_SUCCESS(status)) { // STATUS_DELETE_PENDING

Irp->IoStatus.Status = status;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

IoSkipCurrentIrpStackLocation(Irp);

status = IoCallDriver(ext->LowerDeviceObject, Irp);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 577

IoReleaseRemoveLock(&ext->RemoveLock, Irp);

return status;

}

The IRP_MJ_PNP handler must be modified to use the remove lock properly:

NTSTATUS FilterDispatchPnp(PDEVICE_OBJECT fido, PIRP Irp) {

auto ext = (DeviceExtension*)fido->DeviceExtension;

auto status = IoAcquireRemoveLock(&ext->RemoveLock, Irp);

if(!NT_SUCCESS(status)) { // STATUS_DELETE_PENDING

Irp->IoStatus.Status = status;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

auto stack = IoGetCurrentIrpStackLocation(Irp);

UCHAR minor = stack->MinorFunction;

IoSkipCurrentIrpStackLocation(Irp);

auto status = IoCallDriver(ext->LowerDeviceObject, Irp);

ifï¿½(minor == IRP_MN_REMOVE_DEVICE) {

// wait if needed

IoReleaseRemoveLockAndWait(&ext->RemoveLock, Irp);

IoDetachDevice(ext->LowerDeviceObject);

IoDeleteDevice(fido);

}

else {

IoReleaseRemoveLock(&ext->RemoveLock, Irp);

}

return status;

}

Device Monitor

With the information presented thus far it is possible to build a generic driver that can attach to device
objects as filters to other devices. This allows for intercepting requests to (almost) any device we’re
interested in. A companion user-mode client will allow adding and removing devices to filter.

We’ll create a new EmptyWDM driver project namedKDevMon as we’ve done numerous times. The driver
should be able to attach to multiple devices, and on top of that expose its ownControl Device Object (CDO)
to handle user-mode client configuration requests. The CDO will be created in DriverEntry as usual, but
attachments will be managed separately, controlled by requests from a user-mode client.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 578

To manage all the devices currently being filtered, we’ll create a helper class named DevMonManager. Its
primary purpose is to add and remove devices to filter. Each device will be represented by the following
structure:

struct MonitoredDevice {

UNICODE_STRING DeviceName;

PDEVICE_OBJECT DeviceObject;

PDEVICE_OBJECT LowerDeviceObject;

};

For each device, we need to keep the filter device object (the one created by this driver), the lower device
object to which it’s attached and the device name. The name will be needed for detach purposes. The
DevMonManager class holds a fixed array of MonitoredDevice structures, a fast mutex to protect the
array and some helper functions. Here are the main ingredients in DevMonManager:

const int MaxMonitoredDevices = 32;

class DevMonManager {

public:

void Init(PDRIVER_OBJECT DriverObject);

NTSTATUS AddDevice(PCWSTR name);

int FindDevice(PCWSTR name);

bool RemoveDevice(PCWSTR name);

void RemoveAllDevices();

MonitoredDevice& GetDevice(int index);

PDEVICE_OBJECT CDO;

private:

bool RemoveDevice(int index);

private:

MonitoredDevice Devices[MaxMonitoredDevices];

int MonitoredDeviceCount;

FastMutex Lock;

PDRIVER_OBJECT DriverObject;

};

Adding a Device to Filter

The most interesting function is DevMonManager::AddDevice which does the attaching. Let’s take it step
by step.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 579

NTSTATUS DevMonManager::AddDevice(PCWSTR name) {

First, we have to acquire the mutex in case more than one add/remove/find operation is taking place at
the same time. Next, we can make some quick checks to see if all our array slots are taken and that the
device in question is not already being filtered:

Locker locker(Lock);

if (MonitoredDeviceCount == MaxMonitoredDevices)

return STATUS_BUFFER_TOO_SMALL;

if (FindDevice(name) >= 0)

return STATUS_SUCCESS;

Now it’s time to look for a free array index where we can store information on the new filter being created:

for (int i = 0; i < MaxMonitoredDevices; i++) {

if (Devices[i].DeviceObject != nullptr)

continue;

A free slot is indicated by a NULL device object pointer inside the MonitoredDevice structure. Next, we’ll
try and get a pointer to the device object that we wish to filter with IoGetDeviceObjectPointer:

UNICODE_STRING targetName;

RtlInitUnicodeString(&targetName, name);

PFILE_OBJECT FileObject;

PDEVICE_OBJECT LowerDeviceObject = nullptr;

auto status = IoGetDeviceObjectPointer(&targetName, FILE_READ_DATA,

&FileObject, &LowerDeviceObject);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to get device object pointer (%ws) (0x%8X)\n",

name, status));

return status;

}

The result of IoGetDeviceObjectPointer is in fact the topmost device object, which is not necessarily
the device object we were targeting. This is fine, since any attach operation will actually attach to the top
of the device stack anyway. The function can fail, of course, most likely because a device with that specific
name does not exist.

The next step is to create the new filter device object and initialize it, partly based on the device object
pointer we just acquired. At the same time, we need to fill the MonitoredDevice structure with the proper
data. For each created device we want to have a device extension that stores the lower device object, so
we can get to it easily at IRP handling time. For this, we define a device extension structure called simply
DeviceExtension that can hold this pointer (in the DevMonManager.h file):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 580

struct DeviceExtension {

PDEVICE_OBJECT LowerDeviceObject;

};

Back to DevMonManager::AddDevice - let’s create the filter device object:

PDEVICE_OBJECT DeviceObject = nullptr;

WCHAR* buffer = nullptr;

do {

status = IoCreateDevice(DriverObject, sizeof(DeviceExtension), nullptr,

FILE_DEVICE_UNKNOWN, 0, FALSE, &DeviceObject);

if (!NT_SUCCESS(status))

break;

IoCreateDevice is called with the size of the device extension to be allocated in addition to the DEVICE_-
OBJECT structure itself. The device extension is stored in the DeviceExtension field in the DEVICE_-
OBJECT, so it’s always available when needed. Figure 15-13 shows the effect of calling IoCreateDevice.

Figure 15-13: The effects of IoCreateDevice

Now we can continue with device initialization and the MonitoredDevice structure:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 581

//

// allocate buffer to copy device name

//

buffer = (WCHAR*)ExAllocatePool2(POOL_FLAG_PAGED, targetName.Length,

DRIVER_TAG);

if (!buffer) {

status = STATUS_INSUFFICIENT_RESOURCES;

break;

}

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

DeviceObject->Flags |= LowerDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO);

DeviceObject->DeviceType = LowerDeviceObject->DeviceType;

Devices[i].DeviceName.Buffer = buffer;

Devices[i].DeviceName.MaximumLength = targetName.Length;

RtlCopyUnicodeString(&Devices[i].DeviceName, &targetName);

Devices[i].DeviceObject = DeviceObject;

Technically, we could have used LowerDeviceObject->DeviceType instead of FILE_DEVICE_UNKNOWN
in the call to IoCreateDevice and save the trouble of copying the DeviceType field explicitly.

At this point the new device object is ready, all that’s left is to attach it and finish some more initializations:

status = IoAttachDeviceToDeviceStackSafe(

DeviceObject, // filter device object

LowerDeviceObject, // target device object

&ext->LowerDeviceObject); // result

if (!NT_SUCCESS(status))

break;

Devices[i].LowerDeviceObject = ext->LowerDeviceObject;

//

// hardware based devices require this

//

DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

DeviceObject->Flags |= DO_POWER_PAGABLE;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 582

MonitoredDeviceCount++;

} while (false);

The device is attached, with the resulting pointer saved immediately to the device extension. This is impor-
tant, as the process of attaching itself generates at least two IRPs - IRP_MJ_CREATE and IRP_MJ_CLEANUP
and so the driver must be prepared to handle these. As we shall soon see, this handling requires the lower
device object to be available in the device extension.

All that’s left now is to clean up:

if (!NT_SUCCESS(status)) {

if (buffer)

ExFreePool(buffer);

if (DeviceObject)

IoDeleteDevice(DeviceObject);

Devices[i].DeviceObject = nullptr;

}

if (LowerDeviceObject) {

// dereference - not needed anymore

ObDereferenceObject(FileObject);

}

return status;

}

}

Dereferencing the file object is important; it was obtained by IoGetDeviceObjectPointer. Failure to do
so is a kernel leak. Note that we do not need (in fact we must not) dereference the device object returned
from IoGetDeviceObjectPointer - it will be dereferenced automatically when the file object’s reference
drops to zero.

Here is the full AddDevice method for easy reference:

NTSTATUS DevMonManager::AddDevice(PCWSTR name) {

Locker locker(Lock);

if (MonitoredDeviceCount == MaxMonitoredDevices)

return STATUS_BUFFER_TOO_SMALL;

if (FindDevice(name) >= 0)

return STATUS_SUCCESS;

for (int i = 0; i < MaxMonitoredDevices; i++) {

if (Devices[i].DeviceObject != nullptr)

continue;

UNICODE_STRING targetName;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 583

RtlInitUnicodeString(&targetName, name);

PFILE_OBJECT FileObject;

PDEVICE_OBJECT LowerDeviceObject = nullptr;

auto status = IoGetDeviceObjectPointer(&targetName, FILE_READ_DATA,

&FileObject, &LowerDeviceObject);

if (!NT_SUCCESS(status)) {

KdPrint(("Failed to get device object pointer (%ws) (0x%8X)\n",

name, status));

return status;

}

PDEVICE_OBJECT DeviceObject = nullptr;

WCHAR* buffer = nullptr;

do {

status = IoCreateDevice(DriverObject, sizeof(DeviceExtension),

nullptr, FILE_DEVICE_UNKNOWN, 0, FALSE, &DeviceObject);

if (!NT_SUCCESS(status))

break;

//

// allocate buffer to copy device name

//

buffer = (WCHAR*)ExAllocatePool2(POOL_FLAG_PAGED,

targetName.Length, DRIVER_TAG);

if (!buffer) {

status = STATUS_INSUFFICIENT_RESOURCES;

break;

}

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

DeviceObject->Flags |= LowerDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO);

DeviceObject->DeviceType = LowerDeviceObject->DeviceType;

Devices[i].DeviceName.Buffer = buffer;

Devices[i].DeviceName.MaximumLength = targetName.Length;

RtlCopyUnicodeString(&Devices[i].DeviceName, &targetName);

Devices[i].DeviceObject = DeviceObject;

status = IoAttachDeviceToDeviceStackSafe(

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 584

DeviceObject, // filter device object

LowerDeviceObject, // target device object

&ext->LowerDeviceObject); // result

if (!NT_SUCCESS(status))

break;

Devices[i].LowerDeviceObject = ext->LowerDeviceObject;

// hardware based devices require this

DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

DeviceObject->Flags |= DO_POWER_PAGABLE;

MonitoredDeviceCount++;

} while (false);

if (!NT_SUCCESS(status)) {

if (buffer)

ExFreePool(buffer);

if (DeviceObject)

IoDeleteDevice(DeviceObject);

Devices[i].DeviceObject = nullptr;

}

if (LowerDeviceObject) {

// dereference - not needed anymore

ObDereferenceObject(FileObject);

}

return status;

}

// should never get here

NT_ASSERT(false);

return STATUS_UNSUCCESSFUL;

}

Removing a Filter Device

Removing a device from filtering is fairly straightforward - reversing what AddDevice did:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 585

bool DevMonManager::RemoveDevice(PCWSTR name) {

Locker locker(Lock);

int index = FindDevice(name);

if (index < 0)

return false;

return RemoveDevice(index);

}

bool DevMonManager::RemoveDevice(int index) {

auto& device = Devices[index];

if (device.DeviceObject == nullptr)

return false;

ExFreePool(device.DeviceName.Buffer);

IoDetachDevice(device.LowerDeviceObject);

IoDeleteDevice(device.DeviceObject);

device.DeviceObject = nullptr;

MonitoredDeviceCount--;

return true;

}

The important parts are detaching the device and deleting it. FindDevice is a simple helper to locate a
device by name in the array. It returns the index of the device in the array, or -1 if the device is not found:

int DevMonManager::FindDevice(PCWSTR name) {

UNICODE_STRING uname;

RtlInitUnicodeString(&uname, name);

for (int i = 0; i < MaxMonitoredDevices; i++) {

auto& device = Devices[i];

if (device.DeviceObject &&

RtlEqualUnicodeString(&device.DeviceName, &uname, TRUE)) {

return i;

}

}

return -1;

}

The only trick here is to make sure the fast mutex is acquired before calling this function.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 586

Initialization and Unload

The DriverEntry routine is fairly standard, creating a CDO that would allow adding and removing filters.
The are some differences, however. Most notably, the driver must support all major function codes, as the
driver now serves a dual purpose: on the one hand, it provides configuration functionality to add and
remove devices when calling the CDO, and on the other hand the major function codes will be called by
clients of the filtered devices themselves.

We start DriverEntry by creating the CDO and exposing it through a symbolic link as we’ve seen
numerous times:

DevMonManager g_Data;

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\KDevMon");

PDEVICE_OBJECT DeviceObject;

auto status = IoCreateDevice(DriverObject, 0, &devName,

FILE_DEVICE_UNKNOWN, 0, TRUE, &DeviceObject);

if (!NT_SUCCESS(status))

return status;

UNICODE_STRING linkName = RTL_CONSTANT_STRING(L"\\??\\KDevMon");

status = IoCreateSymbolicLink(&linkName, &devName);

if (!NT_SUCCESS(status)) {

IoDeleteDevice(DeviceObject);

return status;

}

DriverObject->DriverUnload = DevMonUnload;

Nothing new in this piece of code. Next we must initialize all dispatch routines so that all major functions
are supported:

for (auto& func : DriverObject->MajorFunction)

func = HandleFilterFunction;

// equivalent to:

// for (int i = 0; i < ARRAYSIZE(DriverObject->MajorFunction); i++)

// DriverObject->MajorFunction[i] = HandleFilterFunction;

We’ve seen similar code earlier in this chapter. The above code uses a C++ reference to change all major
functions to point to HandleFilterFunction, which we’ll meet very soon. Finally, we need to save the
returned device object for convenience in the global g_Data (DevMonManager) object and initialize it:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 587

g_Data.CDO = DeviceObject;

g_Data.Init(DriverObject);

return status;

}

The Init method just initializes the fast mutex and saves the driver object pointer for later use with
IoCreateDevice (which we covered in the previous section).

We will not be using a remove lock in this driver to simplify the code. The reader is encouraged to add
support for a remove lock as described earlier in this chapter.

Before we dive into that generic dispatch routine, let’s take a closer look at the unload routine. When the
driver is unloaded, we need to delete the symbolic link and the CDO as usual, but we also must detach
from all currently active filters. Here is the code:

void DevMonUnload(PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

UNICODE_STRING linkName = RTL_CONSTANT_STRING(L"\\??\\KDevMon");

IoDeleteSymbolicLink(&linkName);

NT_ASSERT(g_Data.CDO);

IoDeleteDevice(g_Data.CDO);

g_Data.RemoveAllDevices();

}

The key piece here is the call to DevMonManager::RemoveAllDevices. This function is fairly straightfor-
ward, leaning on DevMonManager::RemoveDevice for the heavy lifting:

void DevMonManager::RemoveAllDevices() {

Locker locker(Lock);

for (int i = 0; i < MaxMonitoredDevices; i++)

RemoveDevice(i);

}

Handling Requests

The HandleFilterFunction dispatch routine is the most important piece of the puzzle. It will be called
for all major functions, targeted to one of the filter devices or the CDO. The routine must make that
distinction, and this is exactly why we saved the CDO pointer earlier. Our CDO supports create, close and
DeviceIoControl. Here is the initial code:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 588

NTSTATUS HandleFilterFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

if (DeviceObject == g_Data.CDO) {

switch (IoGetCurrentIrpStackLocation(Irp)->MajorFunction) {

case IRP_MJ_CREATE:

case IRP_MJ_CLOSE:

return CompleteRequest(Irp);

case IRP_MJ_DEVICE_CONTROL:

return DevMonDeviceControl(DeviceObject, Irp);

}

return CompleteRequest(Irp, STATUS_INVALID_DEVICE_REQUEST);

}

If the target device is our CDO, we switch on the major function itself. For create and close we simply
complete the IRP successfully by calling a helper function we met in chapter 7:

NTSTATUS CompleteRequest(PIRP Irp,

NTSTATUS status = STATUS_SUCCESS,

ULONG_PTR information = 0);

NTSTATUS CompleteRequest(PIRP Irp, NTSTATUS status, ULONG_PTR information) {

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = information;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

For IRP_MJ_DEVICE_CONTROL, we call DevMonDeviceControl, which should implement our control codes
for adding and removing filters. For all other major functions, we just complete the IRP with an error
indicating “unsupported operation”.

If the device object is not the CDO, then it must be one of our filters. This is where the driver can do
anything with the request: log it, examine it, change it - anything it wants. For our driver we’ll just send
to the debugger output some pieces of information regarding the request and then send it down to the
device underneath the filter.

First, we’ll extract our device extension to gain access to the lower device:

auto ext = (DeviceExtension*)DeviceObject->DeviceExtension;

Next, we’ll get the thread that issued the request by digging deep into the IRP and then get the thread and
process IDs of the caller:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 589

auto thread = Irp->Tail.Overlay.Thread;

HANDLE tid = nullptr, pid = nullptr;

if (thread) {

tid = PsGetThreadId(thread);

pid = PsGetThreadProcessId(thread);

}

In most cases, the current thread is the same one that made the initial request, but it doesn’t have to be -
it’s possible that a higher-layer filter received the request, did not propagate it immediately for whatever
reason, and later propagated it from a different thread.

Now it’s time to output the thread and process IDs and the type of operation requested:

auto stack = IoGetCurrentIrpStackLocation(Irp);

DbgPrint("Intercepted driver: %wZ: PID: %d, TID: %d, MJ=%d (%s)\n",

&ext->LowerDeviceObject->DriverObject->DriverName,

HandleToUlong(pid), HandleToUlong(tid),

stack->MajorFunction, MajorFunctionToString(stack->MajorFunction));

The MajorFunctionToString helper function just returns a string representation of a major function code.
For example, for IRP_MJ_READ it returns “IRP_MJ_READ”.

At this point the driver can further examine the request. If IRP_MJ_DEVICE_CONTROL was received, it can
look at the control code and the input buffer. If it’s IRP_MJ_WRITE, it can look at the user’s buffer, and so
on.

This driver can be extended to capture these requests and store them in some list (as we did in chapters
8 and 9, for example), and then allow a user mode client to query for this information. This is left as an
exercise for the reader.

Finally, since we don’t want to hurt the operation of the target device, we’ll pass the request along
unchanged:

IoSkipCurrentIrpStackLocation(Irp);

return IoCallDriver(ext->LowerDeviceObject, Irp);

}

The DevMonDeviceControl function mentioned earlier is the driver’s handler for IRP_MJ_DEVICE_-
CONTROL. This is used to add or remove devices from filtering dynamically. The defined control codes are
as follows (in KDevMonCommon.h):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 590

#define DEVMON_DEVICE 0x8004

#define IOCTL_DEVMON_ADD_DEVICE \

CTL_CODE(DEVMON_DEVICE, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_REMOVE_DEVICE \

CTL_CODE(DEVMON_DEVICE, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_REMOVE_ALL \

CTL_CODE(DEVMON_DEVICE, 0x802, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_START_MONITOR \

CTL_CODE(DEVMON_DEVICE, 0x803, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_STOP_MONITOR \

CTL_CODE(DEVMON_DEVICE, 0x804, METHOD_NEITHER, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_ADD_DRIVER \

CTL_CODE(DEVMON_DEVICE, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_DEVMON_REMOVE_DRIVER \

CTL_CODE(DEVMON_DEVICE, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

The handling code should be fairly easy to understand by now:

NTSTATUS DevMonDeviceControl(PDEVICE_OBJECT, PIRP Irp) {

auto stack = IoGetCurrentIrpStackLocation(Irp);

auto status = STATUS_INVALID_DEVICE_REQUEST;

auto code = stack->Parameters.DeviceIoControl.IoControlCode;

switch (code) {

case IOCTL_DEVMON_ADD_DEVICE:

case IOCTL_DEVMON_REMOVE_DEVICE:

{

auto buffer = (WCHAR*)Irp->AssociatedIrp.SystemBuffer;

auto len = stack->Parameters.DeviceIoControl.InputBufferLength;

if (buffer == nullptr || len < 2 || len > 512) {

status = STATUS_INVALID_BUFFER_SIZE;

break;

}

buffer[len / sizeof(WCHAR) - 1] = L'\0';

if (code == IOCTL_DEVMON_ADD_DEVICE)

status = g_Data.AddDevice(buffer);

else {

auto removed = g_Data.RemoveDevice(buffer);

status = removed ? STATUS_SUCCESS : STATUS_NOT_FOUND;

}

break;

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 591

}

case IOCTL_DEVMON_REMOVE_ALL:

{

g_Data.RemoveAllDevices();

status = STATUS_SUCCESS;

break;

}

}

return CompleteRequest(Irp, status);

}

Testing the Driver

The user mode console application is again fairly standard, accepting a few commands for adding and
removing devices. Here are some examples for issuing commands:

devmon add \device\procexp152

devmon remove \device\procexp152

devmon clear

Here is the main function of the user mode client (very little error handling):

int wmain(int argc, wchar_t* argv[]) {

if (argc < 2)

return Usage();

auto const cmd = argv[1];

HANDLE hDevice = CreateFile(L"\\\\.\\kdevmon",

GENERIC_READ | GENERIC_WRITE, 0,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)

return Error("Failed to open device");

DWORD bytes;

if (_wcsicmp(cmd, L"add") == 0) {

if (!DeviceIoControl(hDevice, IOCTL_DEVMON_ADD_DEVICE, argv[2],

DWORD(::wcslen(argv[2]) + 1) * sizeof(WCHAR), nullptr, 0,

&bytes, nullptr))

return Error("Failed in add device");

printf("Add device %ws successful.\n", argv[2]);

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 592

return 0;

}

else if (_wcsicmp(cmd, L"remove") == 0) {

if (!DeviceIoControl(hDevice, IOCTL_DEVMON_REMOVE_DEVICE, argv[2],

DWORD(::wcslen(argv[2]) + 1) * sizeof(WCHAR), nullptr, 0,

&bytes, nullptr))

return Error("Failed in remove device");

printf("Remove device %ws successful.\n", argv[2]);

return 0;

}

else if (_wcsicmp(cmd, L"clear") == 0) {

if (!DeviceIoControl(hDevice, IOCTL_DEVMON_REMOVE_ALL,

nullptr, 0, nullptr, 0, &bytes, nullptr))

return Error("Failed in remove all devices");

printf("Removed all devices successful.\n");

}

else {

printf("Unknown command.\n");

return Usage();

}

return 0;

}

We’ve seen this kind of code many times before.

The driver can be installed like so:

sc create devmon type= kernel binpath= c:\book\kdevmon.sys

And started with:

sc start devmon

As a first example, we’ll launch Process Explorer (must be running elevated so its driver can be installed
if needed), and filter requests coming to it:

devmon add \device\procexp152

Remember thatWinObj shows a device named ProcExp152 in the Device directory of the object manager
namespace. We can launch DbgView from SysInternals elevated, and configure it to log kernel output.
Here is some example output:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 593

1 0.00000000 driver: \Driver\PROCEXP152: PID: 5432, TID: 8820, MJ=14 (IRP_MJ_DE\

VICE_CONTROL)

2 0.00016690 driver: \Driver\PROCEXP152: PID: 5432, TID: 8820, MJ=14 (IRP_MJ_DE\

VICE_CONTROL)

3 0.00041660 driver: \Driver\PROCEXP152: PID: 5432, TID: 8820, MJ=14 (IRP_MJ_DE\

VICE_CONTROL)

4 0.00058020 driver: \Driver\PROCEXP152: PID: 5432, TID: 8820, MJ=14 (IRP_MJ_DE\

VICE_CONTROL)

5 0.00071720 driver: \Driver\PROCEXP152: PID: 5432, TID: 8820, MJ=14 (IRP_MJ_DE\

VICE_CONTROL)

It should be no surprise to find out the process ID of Process Explorer on that machine is 5432 (and it has
a thread with ID 8820). Clearly, Process Explorer sends to its driver requests on a timely basis, and it’s
always IRP_MJ_DEVICE_CONTROL.

The devices that we can filter can be viewed withWinObj, mostly in the Device directory, shown in Figure
15-14.

Figure 15-14: Device directory inWinObj

Let’s filter on keyboardclass0, which is managed by the keyboard class driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 594

devmon add \device\keyboardclass0

Now press some keys. You’ll see that for every key pressed you get a line of output. Here is some of it:

1 11:31:18 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

2 11:31:18 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

3 11:31:19 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

4 11:31:19 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

5 11:31:20 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

6 11:31:20 driver: \Driver\kbdclass: PID: 612, TID: 740, MJ=3 (IRP_MJ_READ)

What is this process 612? This is an instance of Csrss.exe running in the user’s session. One of Csrss’
duties is to get data from input devices. Notice it’s a read operation, which means some response buffer is
expected from the keyboard class driver. But how can we get it? We’ll get to that in the next section.

You can try out other devices. Some may fail to attach (typically those that are open for exclusive access),
and some are not suited for this kind of filtering, especially file system drivers.

Here is an example with the Multiple UNC Provider device (MUP):

devmon add \device\mup

Navigate to some network folder and you’ll see lots of activity similar to what you see here:

001 11:46:19 driver: \FileSystem\FltMgr: PID: 4, TID: 6236, MJ=2 (IRP_MJ_CLOSE)

002 11:46:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 5600, MJ=0 (IRP_MJ_CRE\

ATE)

003 11:46:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 5600, MJ=13 (IRP_MJ_FI\

LE_SYSTEM_CONTROL)

004 11:46:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 5600, MJ=18 (IRP_MJ_CL\

EANUP)

005 11:46:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 5600, MJ=2 (IRP_MJ_CLO\

SE)

006 11:47:00 driver: \FileSystem\FltMgr: PID: 7212, TID: 4464, MJ=0 (IRP_MJ_CRE\

ATE)

007 11:47:00 driver: \FileSystem\FltMgr: PID: 7212, TID: 4464, MJ=13 (IRP_MJ_FI\

LE_SYSTEM_CONTROL)

...

054 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 8272, MJ=13 (IRP_MJ_FI\

LE_SYSTEM_CONTROL)

055 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 8272, MJ=18 (IRP_MJ_CL\

EANUP)

056 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 8272, MJ=2 (IRP_MJ_CLO\

SE)

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 595

057 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 8272, MJ=5 (IRP_MJ_QUE\

RY_INFORMATION)

...

094 11:47:25 driver: \FileSystem\FltMgr: PID: 6164, TID: 6620, MJ=0 (IRP_MJ_CRE\

ATE)

095 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 7288, MJ=0 (IRP_MJ_CRE\

ATE)

096 11:47:25 driver: \FileSystem\FltMgr: PID: 6164, TID: 6620, MJ=5 (IRP_MJ_QUE\

RY_INFORMATION)

097 11:47:25 driver: \FileSystem\FltMgr: PID: 6164, TID: 6620, MJ=18 (IRP_MJ_CL\

EANUP)

098 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 7288, MJ=5 (IRP_MJ_QUE\

RY_INFORMATION)

099 11:47:25 driver: \FileSystem\FltMgr: PID: 6164, TID: 6620, MJ=2 (IRP_MJ_CLO\

SE)

100 11:47:25 driver: \FileSystem\FltMgr: PID: 7212, TID: 7288, MJ=12 (IRP_MJ_DI\

RECTORY_CONTROL)

...

Notice the layering is on top of the Filter Manager wemet in chapter 10. Also notice that multiple processes
are involved (both are Explorer.exe instances). The MUP device is a volume for the Remote file system.
This type of device is best filtered with a file system mini-filter.

Feel free to experiment!

Results of Requests

The generic dispatch handler we have for the DevMon driver only sees requests coming in. These can be
examined, but an interesting question remains - how can we get the results of the request? Some driver
down the device stack is going to call IoCompleteRequest. If the driver is interested in the results, it must
set up an I/O completion routine.

As discussed in chapter 7, completion routines are invoked in reverse order of registration when
IoCompleteRequest is called. Each layer in the device stack (except the lowest one) can set up a comple-
tion routine to be called as part of request completion. At this time, the driver can inspect the IRP’s status,
examine output buffers, etc.

Setting up a completion routine is done with IoSetCompletionRoutine or (better)
IoSetCompletionRoutineEx. Here is the latter’s prototype:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 596

NTSTATUS IoSetCompletionRoutineEx (

In PDEVICE_OBJECT DeviceObject,

In PIRP Irp,

In PIO_COMPLETION_ROUTINE CompletionRoutine,

_In_opt_ PVOID Context, // driver defined

In BOOLEAN InvokeOnSuccess,

In BOOLEAN InvokeOnError,

In BOOLEAN InvokeOnCancel);

Most of the parameters are pretty self-explanatory. The last three parameters indicate for which IRP
completion status to invoke the completion routine:

• If InvokeOnSuccess is TRUE, the completion routine is called if the IRP’s status passes the NT_-
SUCCESS macro.

• If InvokeOnError is TRUE, the completion routine is called if the IRP’s status fails the NT_SUCCESS
macro.

• If InvokeOnCancel is TRUE, the completion routine is called if the IRP’s status is STATUS_CANCELLED,
which means the request has been canceled.

The completion routine itself must have the following prototype:

NTSTATUS CompletionRoutine (

In PDEVICE_OBJECT DeviceObject,

In PIRP Irp,

_In_opt_ PVOID Context);

The completion routine is called by an arbitrary thread (the one that called IoCompleteRequest) at IRQL
DISPATCH_LEVEL (2). This means all the rules for IRQL 2 must be followed.

What can the completion routine do? It can examine the IRP’s status and buffers, and can call
IoGetCurrentIrpStackLocation to get more information from the IO_STACK_LOCATION. It must not call
IoCompleteRequest, because this already happened (this is the reason we are in the completion routine
in the first place).

What about the return status? There are actually only two options here: STATUS_MORE_PROCESSING_-
REQUIRED and everything else. Returning that special status tells the I/O manager to stop propagating the
IRP up the device stack and “undo” the fact the IRP was completed. The driver claims ownership of the
IRP and must eventually call IoCompleteRequest again (this is not an error). This option is mostly for
hardware-based drivers and will not be discussed further in this book.

Any other status returned from the completion routine continues propagation of the IRP up the device
stack, possibly calling other completion routines for upper layer drivers. In this case, the driver must mark
the IRP as pending if the lower device marked it as one:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 597

if (Irp->PendingReturned)

IoMarkIrpPending(Irp); // sets SL_PENDING_RETURNED in irpStackLoc->Control

This is necessary because the I/O manager does the following after the completion routine returns:

Irp->PendingReturned = irpStackLoc->Control & SL_PENDING_RETURNED;

The exact reasons for all these intricacies are beyond the scope of this book. The best source
of information on these topics is Walter Oney’s excellent book, “Programming the Windows
Driver Model”, second edition (MS Press, 2003). Although the book is old (covering Windows
XP), and it’s about hardware device drivers only, it’s still quite relevant and has some great
information.

Implement an I/O completion routine for the DevMon driver.

Driver Hooking

Using filter drivers described in this chapter and in chapter 10 provides a lot of power to a driver developer:
the ability to intercept requests to almost any device. In this section I’d like to mention another technique,
that although not “official”, may be quite useful in certain cases.

This driver hooking technique is based on the idea of replacing dispatch routine pointers of running drivers.
This automatically provides “filtering” for all devices managed by that driver. The hooking driver will
save the old function pointers and then replace the major function array in the driver object with its own
functions. Now any request coming to a device under control of the hooked driver will invoke the hooking
driver’s dispatch routines. There is no extra device objects or any attaching going on here.

Some drivers are protected by PatchGuard against these kinds of hooks. A canonical example
is the NTFS file system driver - on Windows 8 and later - cannot be hooked in that way. If it
is, the system will crash after a few minutes.

PatchGuard (officially calledKernel Patch Protection) is a kernelmechanism that hashes various
data structures that are considered important, and if any change is detected - will crash the
system. A classic example is the System Service Dispatch Table (SSDT) which points to system
services (system calls).

Drivers have names and thus are part of the Object Manager’s namespace, residing in theDriver directory,
shown withWinObj in Figure 15-15 (must run elevated to see the contents of the Driver directory).

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 598

Figure 15-15: The Driver directory inWinObj

To hook a driver, we need to locate the driver object pointer (DRIVER_OBJECT), and to do that we can use
an undocumented, but exported, function that can locate any object given its name:

NTSTATUS ObReferenceObjectByName (

In PUNICODE_STRING ObjectPath,

In ULONG Attributes,

_In_opt_ PACCESS_STATE PassedAccessState,

_In_opt_ ACCESS_MASK DesiredAccess,

In POBJECT_TYPE ObjectType,

In KPROCESSOR_MODE AccessMode,

_Inout_opt_ PVOID ParseContext,

Out PVOID *Object);

Here is an example of calling ObReferenceObjectByName to locate the kbdclass driver:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Chapter 15: Miscellaneous Topics 599

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\driver\\kbdclass");

PDRIVER_OBJECT driver;

auto status = ObReferenceObjectByName(&name, OBJ_CASE_INSENSITIVE,

nullptr, 0, *IoDriverObjectType, KernelMode,

nullptr, (PVOID*)&driver);

if(NT_SUCCESS(status)) {

// manipulate driver

ObDereferenceObject(driver); // eventually

}

The hooking driver can now replace themajor function pointers, the unload routine, the add device routine,
etc. Any such replacement should always save the previous function pointers for unhooking when desired
and for forwarding the request to the real driver. Since this replacement must be done atomically, it’s best
to use InterlockedExchangePointer to make the exchange atomically.

The following code snippet demonstrates this technique:

for (int j = 0; j <= IRP_MJ_MAXIMUM_FUNCTION; j++) {

InterlockedExchangePointer((PVOID*)&driver->MajorFunction[j],

MyHookDispatch);

}

InterlockedExchangePointer((PVOID*)&driver->DriverUnload, MyHookUnload);

A fairly complete example of this hooking technique can be found in my DriverMon project on Github
at https://github.com/zodiacon/DriverMon.

Implement a driver that hooks other drivers using this technique. Create a user-mode client
that can hook a specified driver on the command line.

Kernel Libraries

In the course of writing drivers, we developed some classes and helper functions that can be used in
multiple drivers. It makes sense, though, to package them in a single library that we can then reference
instead of copying source files from project to project.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/zodiacon/DriverMon

Chapter 15: Miscellaneous Topics 600

The project templates provided with the WDK don’t explicitly provide a static library for drivers, but it’s
fairly easy to make one. The way to do this is to create a normal driver project (based on WDM Empty
Driver for example), and then just change the project type to a static library as shown in Figure 15-16.

Figure 15-16: Configuring a kernel static library

A driver project that wants to link to this library just needs to add a reference with Visual Studio by right-
clicking the References node in Solution Explorer, choosing Add Reference… and checking the library
project. Figure 15-17 shows the references node of an example driver after adding the reference.

Figure 15-17: Referencing a library

Summary

Kernel programming is a vast topic, some parts of which we covered in this book. Obviously, there is more.
Most kernel driver topics are documented in the WDK, and if you followed the book you should have a
much easier time reading that documentation.

I wish you happy kernel programming!

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Appendix: The Kernel Template Library
The Kernel Template Library (KTL) is a set of types and functions to help write kernel drivers in a safe
and less error-prone way. Many of these classes have been used throughout the book. This appendix
summarizes the provided classes at the time of writing.

The KTL is a work in progress. Interested readers are welcome to contribute by providing pull requests
and raising issues. The KTL can be found at
https://github.com/zodiacon/windowskernelprogrammingbook2e/tree/master/ktl

Standard Library

The std.h file adds support for move semantics with a std::move function that behaves like its user-mode
counterpart. This allows adding move semantics to kernel types.

Synchronization

Several wrappers are provided to deal with thread and processor synchronization. All have an Init
method, as well as Lock and Unlock.

• FastMutex - wraps a FAST_MUTEX structure.
• Mutex - wraps a KMUTEX structure.
• SpinLock - wraps a KSPIN_LOCK.
• ExecutiveResource - wraps an ERESOURCE. Also has LockShared method to acquire the shared
lock.

• Locker<> class template - provides RAII locking over any one of the above.
• SharedLocker<> used with ExecutiveResource when the shared lock is needed.

Memory

The new and delete operator are overloaded, with an enumeration that makes it less likely to get an error
with the pool flags (memory.h and Memory.cpp):

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

https://github.com/zodiacon/windowskernelprogrammingbook2e/tree/master/ktl

Appendix: The Kernel Template Library 602

enum class PoolType : ULONG64 {

Paged = POOL_FLAG_PAGED,

NonPaged = POOL_FLAG_NON_PAGED,

NonPagedExecute = POOL_FLAG_NON_PAGED_EXECUTE,

CacheAligned = POOL_FLAG_CACHE_ALIGNED,

Uninitialized = POOL_FLAG_CACHE_ALIGNED,

ChargeQuota = POOL_FLAG_USE_QUOTA,

RaiseOnFailure = POOL_FLAG_RAISE_ON_FAILURE,

Session = POOL_FLAG_SESSION,

SpecialPool = POOL_FLAG_SPECIAL_POOL,

};

DEFINE_ENUM_FLAG_OPERATORS(PoolType);

void* __cdecl operator new(size_t size, PoolType pool,

ULONG tag = DRIVER_TAG);

void* __cdecl operator new[](size_t size, PoolType pool,

ULONG tag = DRIVER_TAG);

void __cdecl operator delete(void* p, size_t);

void __cdecl operator delete[](void* p, size_t);

The LookasodeList template class is a wrapper around lookaside lists (either paged or non-paged). See
LookasideList.h.

Strings

The BasicString<> template class provides support for a variable-length string, either UTF-16 or ANSI,
based on template arguments:

template<typename T, PoolType Pool, ULONG Tag = DRIVER_TAG>

class BasicString;

Several specialization are defined:

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

Appendix: The Kernel Template Library 603

template<PoolType Pool, ULONG Tag = DRIVER_TAG>

using WString = BasicString<wchar_t, Pool, Tag>;

template<ULONG Tag = DRIVER_TAG>

using NPWString = BasicString<wchar_t, PoolType::NonPaged, Tag>;

template<ULONG Tag = DRIVER_TAG>

using PWString = BasicString<wchar_t, PoolType::Paged, Tag>;

template<PoolType Pool, ULONG Tag>

using AString = BasicString<char, Pool, Tag>;

template<ULONG Tag = DRIVER_TAG>

using NPAString = BasicString<char, PoolType::NonPaged, Tag>;

template<ULONG Tag = DRIVER_TAG>

using PAString = BasicString<char, PoolType::Paged, Tag>;

See BasicString.h for more details.

Containers

The Vector<> template class abstract a dynamic array of objects that are trivially constructible and
copyable, i.e. don’t have dynamic memory internally. Examples are integers, and plain structure.

template<typename T, PoolType Pool, ULONG Tag = DRIVER_TAG>

class Vector;

See Vector.h for details.

The LinkedList<> template class wraps a LIST_ENTRY based linked-list with synchronization:

template<typename T, typename TLock = FastMutex>

struct LinkedList;

See the LinkedList.h file for details.

File System Mini-Filters

The FilterFileNameInformation class provides a RAII wrapper around PFLT_FILE_NAME_INFORMATION.
See FileNameInformation.h for the details.

hid
e0
1.i
r

Join us now -> hide01.ir | donate.hide01.ir | t.me/Hide01 | t.me/RedBlueHit

	Table of Contents
	Introduction
	Who Should Read This Book
	What You Should Know to Use This Book
	Book Contents
	Sample Code

	Chapter 1: Windows Internals Overview
	Processes
	Virtual Memory
	Page States
	System Memory

	Threads
	Thread Stacks

	System Services (a.k.a. System Calls)
	General System Architecture
	Handles and Objects
	Object Names
	Accessing Existing Objects

	Chapter 2: Getting Started with Kernel Development
	Installing the Tools
	Creating a Driver Project
	The DriverEntry and Unload Routines
	Deploying the Driver
	Simple Tracing
	Summary

	Chapter 3: Kernel Programming Basics
	General Kernel Programming Guidelines
	Unhandled Exceptions
	Termination
	Function Return Values
	IRQL
	C++ Usage
	Testing and Debugging

	Debug vs. Release Builds
	The Kernel API
	Functions and Error Codes
	Strings
	Dynamic Memory Allocation
	Linked Lists
	The Driver Object
	Object Attributes
	Device Objects
	Opening Devices Directly
	Summary

	Chapter 4: Driver from Start to Finish
	Introduction
	Driver Initialization
	Passing Information to the Driver
	Client / Driver Communication Protocol
	Creating the Device Object

	Client Code
	The Create and Close Dispatch Routines
	The Write Dispatch Routine
	Installing and Testing
	Summary

	Chapter 5: Debugging and Tracing
	Debugging Tools for Windows
	Introduction to WinDbg
	Tutorial: User mode debugging basics

	Kernel Debugging
	Local Kernel Debugging
	Local kernel Debugging Tutorial

	Full Kernel Debugging
	Using a Virtual Serial Port
	Using the Network

	Kernel Driver Debugging Tutorial
	Asserts and Tracing
	Asserts
	Extended DbgPrint
	Other Debugging Functions
	Trace Logging
	Viewing ETW Traces

	Summary

	Chapter 6: Kernel Mechanisms
	Interrupt Request Level (IRQL)
	Raising and Lowering IRQL
	Thread Priorities vs. IRQLs

	Deferred Procedure Calls
	Using DPC with a Timer

	Asynchronous Procedure Calls
	Critical Regions and Guarded Regions

	Structured Exception Handling
	Using __try/__except
	Using __try/__finally
	Using C++ RAII Instead of __try / __finally

	System Crash
	Crash Dump Information
	Analyzing a Dump File
	System Hang

	Thread Synchronization
	Interlocked Operations
	Dispatcher Objects
	Mutex
	Fast Mutex
	Semaphore
	Event
	Named Events
	Executive Resource

	High IRQL Synchronization
	The Spin Lock
	Queued Spin Locks

	Work Items
	Summary

	Chapter 7: The I/O Request Packet
	Introduction to IRPs
	Device Nodes
	IRP Flow

	IRP and I/O Stack Location
	Viewing IRP Information

	Dispatch Routines
	Completing a Request

	Accessing User Buffers
	Buffered I/O
	Direct I/O
	User Buffers for IRP_MJ_DEVICE_CONTROL

	Putting it All Together: The Zero Driver
	Using a Precompiled Header
	The DriverEntry Routine
	The Create and Close Dispatch Routines
	The Read Dispatch Routine
	The Write Dispatch Routine
	Test Application
	Read/Write Statistics

	Summary

	Chapter 8: Advanced Programming Techniques (Part 1)
	Driver Created Threads
	Memory Management
	Pool Allocations
	Secure Pools
	Overloading the new and delete Operators
	Lookaside Lists
	The ``Classic'' Lookaside API
	The Newer Lookaside API

	Calling Other Drivers
	Putting it All Together: The Melody Driver
	Client Code

	Invoking System Services
	Example: Enumerating Processes

	Summary

	Chapter 9: Process and Thread Notifications
	Process Notifications
	Implementing Process Notifications
	The DriverEntry Routine
	Handling Process Exit Notifications
	Handling Process Create Notifications

	Providing Data to User Mode
	The User Mode Client

	Thread Notifications
	Image Load Notifications
	Final Client Code

	Remote Thread Detection
	The Detector Client

	Summary

	Chapter 10: Object and Registry Notifications
	Object Notifications
	Pre-Operation Callback
	Post-Operation Callback

	The Process Protector Driver
	Object Notification Registration
	Managing Protected Processes
	The Pre-Callback
	The Client Application

	Registry Notifications
	Registry Overview
	Using Registry Notifications
	Handling Pre-Notifications
	Handling Post-Operations

	Extending the SysMon Driver
	Handling Registry Callback
	Modified Client Code
	Performance Considerations
	Miscellaenous Notes

	Summary

	Chapter 11: Advanced Programming Techniques (Part 2)
	Timers
	Kernel Timers
	Timer Resolution
	High-Resolution Timers
	I/O Timer

	Generic Tables
	Splay Trees
	Tables Sample Driver
	Testing the Tables Driver
	AVL Trees
	Hash Tables

	Singly Linked Lists
	Sequenced Singly-Linked Lists

	Callback Objects

	Chapter 12: File System Mini-Filters
	Introduction
	Loading and Unloading
	Initialization
	Operations Callback Registration
	The Altitude

	Installation
	Installing the Driver

	Processing I/O Operations
	Pre Operation Callbacks
	Post Operation Callbacks

	File Names
	File Name Parts
	RAII FLT_FILE_NAME_INFORMATION wrapper

	The Delete Protector Driver
	Handling Pre-Create
	Handling Pre-Set Information
	DelProtect Configuration
	Testing the Modified Driver

	The Directory Hiding Driver
	Managing Directories
	Phase 1: Prevent Access
	Phase 2: Making a Directory Invisible

	Contexts
	Managing Contexts

	Initiating I/O Requests
	The File Backup Driver
	The Post Create Callback
	The Pre-Write Callback
	The Post-Cleanup Callback
	Testing the Driver
	Restoring Backups
	File Copying with a Section Object

	User Mode Communication
	Creating the Communication Port
	User Mode Connection
	Sending and Receiving Messages
	Enhanced Backup Driver
	The User Mode Client

	Debugging
	Exercises
	Summary

	Chapter 13: The Windows Filtering Platform
	WFP Overview
	The WFP API
	User-Mode Examples
	Enumerating Objects
	Adding Filters

	Callout Drivers
	Callout Driver Basics
	Callout Registration

	Demo: Callout Driver
	The Driver
	Managing Processes
	Callout Callbacks

	Demo: User-Mode Client
	Testing
	Debugging

	Summary

	Chapter 14: Introduction to KMDF
	Introduction to WDF
	Introduction to KMDF
	KMDF Objects
	Core Object Types

	Object Creation
	Context Memory

	The Booster KMDF Driver
	Driver Initialization
	Device I/O Control Handling

	The INF File
	The Install Sections
	Device Installation

	The User-Mode Client
	Installing and Testing
	Registering a Device Class
	Summary

	Chapter 15: Miscellaneous Topics
	Driver Signing
	Driver Verifier
	Example Driver Verifier Sessions

	Filter Drivers
	Filter Driver Implementation
	Attaching Filters
	Attaching Filters at Arbitrary Time
	Filter Cleanup
	More on Hardware-Based Filter Drivers

	Device Monitor
	Adding a Device to Filter
	Removing a Filter Device
	Initialization and Unload
	Handling Requests
	Testing the Driver
	Results of Requests

	Driver Hooking
	Kernel Libraries
	Summary

	Appendix: The Kernel Template Library
	Standard Library
	Synchronization
	Memory
	Strings
	Containers
	File System Mini-Filters

